

UD-GNN: Uncertainty-aware Debiased Training on Semi-Homophilous Graphs

Yang Liu¹; Xiang Ao^{1*}; Fuli Feng²; Qing He^{1*}

柳阳1; 敖翔1*; 冯福利2; 何清1*

* denotes corresponding author.

Content

- Background and Motivation
- ≻ Method UD-GNN
- > Experiment
- Conclusion and Future Work

Background

Images credit to Easley and Kleinberg, Networks, crowds, and markets. 2010

(a) Chicago, 1940

- Fraudsters connect to benign users to camouflage themselves
- Interdisciplinary papers cite papers from other research areas

Heterophilous Graph

Related Work

GNNs for Homophilous Graphs

- Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017.
- Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017. Inductive Representation Learning on Large Graphs. NeurIPS 2017.
- Veličković, Petar, et al. "Graph attention networks." ICLR 2018.
- Johannes Klicpera et al. "Predict then propagate: Graph neural networks meet personalized pagerank." ICLR 2018.

- Zhu, Jiong, et al. "Beyond homophily in graph neural networks: Current limitations and effective designs." NeurIPS 2020.
- Chien, Eli, et al. "Adaptive universal generalized pagerank graph neural network." ICLR 2020.
- Zhu, Jiong, et al. "Graph neural networks with heterophily." AAAI 2021.
- Lim, Derek, et al. "Large scale learning on nonhomophilous graphs: New benchmarks and strong simple methods." NeurIPS 2021.

Preliminaries

Lim, Derek, et al. "Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods." NeurIPS 2021.

Preliminaries

Homophily Ratio

Definitions:

- $\mathcal{G} = (\mathcal{V}, \mathbf{A}, \mathbf{X}, \mathbf{Y})$ $\mathcal{E}_{intra} = \{(u, v) | \mathbf{A}_{uv} = 1 \land y_u = y_v\}$ $\mathcal{E}_v = \{(u, v) | \mathbf{A}_{uv} = 1\}$
- ➤ Graph-level Homophily Ratio:

$$h_{\mathcal{G}} = \frac{|\mathcal{E}_{\text{intra}}|}{|\mathbf{A}|} = \frac{3}{7}$$

≻ Node-level Homophily Ratio:

$$h_{v} = \frac{|\mathcal{E}_{v} \cap \mathcal{E}_{\text{intra}}|}{|\mathcal{E}_{v}|}$$

Semi-Homophilous Graph

➢ For strong homophilous nodes, the accuracy is close to 0.99.

➢ For strong heterophilous nodes, the accuracy ranges from 0.48 to 0.74.

➢ For the four GNNs, the performance gap exists with a range from 0.25 to 0.5. Content

Background and Motivation

≻ Method – UD-GNN

- Observation and Overview
- Uncertainty Estimation
- Debiased Training
- ➢ Experiment
- Conclusion and Future Work

Observation

For transductive node classification

- The node-level homophily ratio computed from incomplete labels are unreliable
 - Some node labels are unavailable during the training phase

- The output of GNNs exhibit high uncertainty for heterophilous nodes
 - The output uncertainty may help to identify heterophilous nodes

KDD 2022

UD-GNN: Uncertainty-aware Debiased Graph Neural Network

Debiased Training

 $(\mathbf{3})$

Method

KDD 2022

Uncertainty Estimation

- Monte Carlo dropout variational inference
- Estimated from $\{\widehat{\mathbf{W}}_t\}_{t=1}^T$ GNN predictors

$$\mathcal{L}(\mathbf{W}_b) = -\frac{1}{T} \sum_{t=1}^{T} \mathbf{Y} \log(f_{\widehat{\mathbf{W}}_t}(\mathbf{A}, \mathbf{X})) + \frac{1-\theta}{2T} \|\mathbf{W}_b\|^2$$

$$\widehat{Y}_{t} = f_{\widehat{\mathbf{W}}_{t}}(\mathbf{A}, \mathbf{X})$$
$$\mathbb{E}[\widehat{\mathbf{Y}}|\mathbf{A}, \mathbf{X}] = \int \widehat{\mathbf{Y}} p(\widehat{\mathbf{Y}}|\mathbf{A}, \mathbf{X}) d\widehat{\mathbf{Y}} \approx \frac{1}{T} \sum_{t=1}^{T} \widehat{Y}_{t}$$
$$U[\widehat{\mathbf{Y}}|\mathbf{A}, \mathbf{X}] = \operatorname{Var}(\widehat{\mathbf{Y}}|\mathbf{A}, \mathbf{X}) \approx \frac{1}{T} \sum_{t=1}^{T} (\widehat{Y}_{t} - \mathbb{E}[\widehat{\mathbf{Y}}|\mathbf{A}, \mathbf{X}])^{2}$$

Method

Debiased Training

- Divide $\mathcal{V}_{\text{train}}$ into \mathcal{V}_{con} and \mathcal{V}_{unc} according to *U* such that debiasing ratio $\gamma = \frac{|\mathcal{V}_{\text{con}}|}{|\mathcal{V}_{\text{unc}}|}$
- Prune the parameters close to zero in W_b with 0-1 mask Z and retrain the remained parameters with \mathcal{V}_{con}
- Freeze $Z \odot \mathbf{W}_b$ and train $(1 Z) \odot \mathbf{W}_b$ with \mathcal{V}_{unc} to obtain \mathbf{W}_d

$$\mathbf{W}_d = (1 - Z) \odot \mathbf{W}_b + \text{stop}_{\text{gradient}}(Z \odot \mathbf{W}_b)$$

$$\mathcal{L}(\mathbf{W}_d) = -\frac{1}{|\mathcal{V}_{unc}|} \sum_{v \in \mathcal{V}_{unc}} y_v \log(f_{\mathbf{W}_d}(\mathbf{A}, \mathbf{X}_{v \cup \mathcal{N}_v}))$$

Content

Background and Motivation

≻ Method – UD-GNN

> Experiment

- RQ1: Does UD-GNN outperform the state-of-the-art methods on semi-homophilous graphs?
- RQ2: How do the key components contribute to the results?
- RQ3: Does UD-GNN work well on heterophilous graphs?
- RQ4: What is the sensitivity of UD-GNN with respect to different debiasing ratios, mixing ratios and number of classes?

Conclusion and Future Work

Public benchmark

- **cSBM**: contextual stochastic block models
- Penn94: a friendship network from the Facebook100 networks
- **Cora-full:** a citation network labeled on the paper topic
- **Ogbn-arxiv:** the citation network between all Computer Science (CS) arXiv papers indexed by MAG

≻Train/Valid/Test:

- **cSBM**: 40%/20%/40%
- **Penn94**: 80%/10%/10%
- **Cora-full:** 70%/10%/20%
- **Ogbn-arxiv:** 2017/2018/2019

Dataset	#Node	#Edge	#Class	#Feat	%Heter
cSBM	20,000	998,766	10	1,024	50%
Penn94	41,554	1,362,229	2	4,814	49%
Cora-full	19,793	126,842	70	8,710	44%
Ogbn-arxiv	169,343	1,166,243	40	128	37%

Compared methods

- GCN, GAT: Traditional graph convolutional network and graph attention network
- Mixhop: Repeatedly mixing feature representations of neighbors at various distances
- GPR-GNN: Generalized PageRank GNN
- JK-Net: Jump Knowledge
- H2GCN, CPGNN: GNNs for heterophilous graphs
- WRGAT: Improving the assortativity of graphs with local mixing patterns
- U-GNN: Universal GCN extracting information from 1-hop, 2-hop and kNN networks
- > Metrics
 - Accuracy: $eval(\mathbf{Y}, f_{\mathbf{W}}(\mathbf{A}, \mathbf{X}))$
 - **Relative bias:** $\delta = eval(\mathbf{Y}, f_{\mathbf{W}^*}(\mathbf{A}, \mathbf{X})) eval(\mathbf{Y}, f_{\mathbf{W}}(\mathbf{A}, \mathbf{X}))$

➢RQ1: Does UD-GNN outperform the state-of-the-art methods on semi-homophilous graphs?

• UD-GNN achieves the best accuracy with the lowest relative bias

Datase	Dataset cSBM		Penn94		Cora-full		Ogbn-arxiv						
Metric	2	Acc ↑	$\delta_{ m ho}\downarrow$	$\delta_{\rm he}\downarrow$	Acc ↑	$\delta_{ m ho}\downarrow$	$\delta_{ m he}\downarrow$	Acc ↑	$\delta_{ m ho}\downarrow$	$\delta_{\mathrm{he}}\downarrow$	Acc ↑	$\delta_{ m ho}\downarrow$	$\delta_{\rm he}\downarrow$
GCN	VA	47.30 ± 0.43	1.23	9.11	82.06 ± 0.19	3.89	3.32	68.81±0.29	2.8	3.11	71.17±0.11	0.03	7.76
	UD	49.39 ± 0.16	2.31	4.42	82.96 ± 0.21	3.93	1.31	69.70±0.24	3.51	1.12	72.06±0.17	1.88	0.28
GAT	VA	50.44 ± 0.29	1.68	8.27	79.85 ± 0.73	5.48	8.63	69.24 ± 0.27	1.82	3.27	69.90±0.12	0.43	6.24
	UD	52.66 ± 0.31	2.04	3.12	83.54 ± 0.20	5.24	0.89	70.85 ± 0.34	2.21	1.18	71.07±0.35	1.65	0.65
Mixhop	VA	51.31±0.41	0.93	8.25	82.14±0.21	2.37	5.36	69.11±0.31	2.26	3.94	72.80±0.23	0.7	5.63
	UD	52.51±0.17	1.84	3.17	83.68±0.65	3.22	2.01	70.01±0.34	2.94	2.67	73.20±0.09	2.13	0.2
GPRGNN	VA	53.79±0.15	1.29	9.23	76.77 ± 0.25	5.58	10.92	70.15±0.30	1.61	4.92	70.98±0.17	0.95	5.84
	UD	54.80±0.20	1.62	2.48	80.70 ± 0.24	6.82	0.91	71.09±0.30	1.65	2.36	71.32±0.13	2.48	1.04
JK-NE		50.68 ± 0.38	2.67	6.21	81.26 ± 0.23	3.35	8.24	68.12 ± 0.23	2.34	3.23	70.66 \pm 0.19	0.72	8.23
H2GCI		51.93 ± 0.25	2.46	8.26	81.63 ± 0.16	4.16	7.12	70.82 \pm 0.82	3.35	3.67	70.14 \pm 0.00	0.28	6.82
CPGN		51.93 ± 0.23 51.84 ± 0.67	2.40 2.03	8.26 5.26	81.03 ± 0.16 80.92 ± 0.67	4.10	7.12 8.21	70.82 ± 0.82 70.38 ± 0.23	3.35 2.35	3.87	70.14 ± 0.00 69.24 ± 0.52	0.28	6.82 6.27
WRGA		52.48±0.28	1.89	6.26	82.32±0.83	3.12	6.23	71.32 ± 0.92	2.92	4.38	71.23±0.67	0.46	6.23
U-GCN		52.74±0.72	1.73	8.23	82.31±0.89	5.23	4.21	70.47 ± 0.78	1.92	4.21	70.27±0.81	0.61	5.98

Experiment

>RQ2: How do the key components contribute to the results?

- D-GNN removes uncertainty estimation and trains a separate model to discriminate homophilous nodes from heterophilous nodes for debiasing.
- ➤ U-GNN removes debiased training and applies Focal loss based on the estimated uncertainty scores.

Experiment

► RQ3: Does UD-GNN work well on heterophilous graphs?

- UD-GNN improves the performance due to the refining of uncertain nodes in the debiased training.
- UD-GNN achieves the best results on Chameleon and Squirrel, with comparable performance on Wisconsin.

Dataset	#Node	#Edge	#Class	#Feat
Chameleon	2,277	36,101	5	2,325
Squirrel	5,201	217,073	5	2,089
Wisconsin	251	515	5	1,703

Dataset		Chameleon	Squirrel	Wisconsin	
Mixhop VA		58.25±1.83	42.86 ± 1.48	73.83 ± 6.82	
UD		59.23±1.24	43.92 ± 1.42	74.23 ± 5.92	
GPRGNN	VA	64.36 ± 0.87	46.83±0.84	79.23±3.81	
	UD	66.23 ± 1.03	47.92±0.25	81.29±2.34	
JK-NET		53.95 ± 1.14	33.51 ± 1.32	48.39 ± 5.28	
H2GCN		57.39 ± 1.96	35.23 ± 1.35	85.88 ± 4.92	
CPGNN		59.11 ± 1.23	36.27 ± 1.29	86.29 ± 4.28	
WRGAT		63.26 ± 1.67	41.26 ± 1.37	86.28 ± 2.46	
U-GCN		54.07 ± 1.57	34.39 ± 1.34	69.89 ± 2.54	

Experiment

 \geq RQ4: What is the sensitivity of UD-GNN with respect to different debiasing ratios, mixing ratios and number of classes?

(d) δ on ogbn-arxiv with different debiasing ratios

(e) δ on cSBM with different mixing ratios

1:1

Mixing ratio

1:2

7

6

5

1:4

4:1

2:1

(f) δ on cSBM with different classes

Number of classes

5

2 3 ---- GCN

10

Content

- Background and Motivation
- ≻ Method UD-GNN
- > Experiment
- Conclusion and Future Work

➤Conclusion

- We investigate the bias issue between homophily and heterophily on semihomophilous graphs.
- We propose an Uncertainty-aware Debiasing framework to mitigate the bias.
- Experiments on four benchmark semi-homophilous graph datasets demonstrate the effectiveness of the proposed framework.

≻Future Work

- New message passing architecture for semi-homophilous graphs
- Spectral filter for semi-homophilous graphs

Thanks for listening!

If you have any question, feel free to contact us at liuyang520ict@gmail.com

aoxiang@ict.ac.cn

Paper and slides are available at https://ponderly.github.io/

