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ABSTRACT
Recent studies on Graph Neural Networks (GNNs) point out that
most GNNs depend on the homophily assumption but fail to gener-
alize to graphs with heterophily where dissimilar nodes connect.
The concept of homophily or heterophily defined previously is a
global measurement of the whole graph and cannot describe the lo-
cal connectivity of a node. From the node-level perspective, we find
that real-world graph structures exhibit a mixture of homophily and
heterophily, which refers to the co-existence of both homophilous
and heterophilous nodes. Under such a mixture, we reveal that
GNNs are severely biased towards homophilous nodes, suffering
a sharp performance drop on heterophilous nodes. To mitigate
the bias issue, we explore an Uncertainty-aware Debiasing (UD)
framework, which retains the knowledge of the biased model on
certain nodes and compensates for the nodes with high uncertainty.
In particular, UD estimates the uncertainty of the GNN output to
recognize heterophilous nodes. UD then trains a debiased GNN by
pruning the biased parameters with certain nodes and retraining
the pruned parameters on nodes with high uncertainty. We apply
UD on both homophilous GNNs (GCN and GAT) and heterophilous
GNNs (Mixhop and GPR-GNN) and conduct extensive experiments
on synthetic and benchmark datasets, where the debiased model
consistently performs better and narrows the performance gap
between homophilous and heterophilous nodes1.
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1 INTRODUCTION
Graph Neural Networks (GNNs) have become the promising so-
lution for various graph-based learning tasks, such as social rec-
ommendation [12, 14], fraud detection [13, 22, 39], and drug dis-
covery [21, 29]. The main idea of GNNs is to enhance the target
node representation by propagating neighbor representations over
the graph structure. Recent studies [40, 41] point out that most
GNNs work well under the homophily assumption but fails on het-
erophilous graphs where dissimilar nodes connect. To determine
a graph to be homophilous or heterophilous, the concept of ho-
mophily ratio is defined as the fraction of edges connecting nodes
with the same labels [23]. Graphs with higher homophily ratios are
homophilous and those with lower ratios are non-homophilous.

However, the homophily ratio is a graph-level measure of the
whole graph and cannot describe the local connectivity of each node.
We define node-level homophily ratio as the fraction of neighbors
with the same label as the node and determine whether a node is
homophilous or heterophilous based on a threshold2 of the ratio.

From the node-level perspective, non-homophilous graphs can
be further categorized into semi-homophilous graphs and het-
erophilous graphs. Semi-homophilous graphs indicate that both
homophilous and heterophilous nodes co-exist in the same graph.
For instance, in social graphs, people make friends with not only
those who share similar interests but also those with different back-
grounds. In citation graphs, interdisciplinary papers cite papers
from not only the same research areas but also other related ar-
eas. To illustrate this categorization with statistics, we calculate
the node-level homophily ratio of nine graphs from several bench-
marks [20, 25] and divide nodes into four groups, which are colored
2In this work, we simply set the threshold to be 0.5.
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Figure 1: The nodes are categorized into four groups accord-
ing to node-level homophily ratio: strong heterophily (0-
0.25), weak heterophily (0.25-0.5), weak homophily (0.5-0.75),
and strong homophily (0.75-1). The first three figures demon-
strate the distribution of node groups in the nine graph
datasets and the last figure shows the group-level accura-
cies of the four GNNs on the Cora-full dataset.

in Figure 1. Cora, Citeseer, and PubMed are typically homophilous
graphs where the strong homophily group contains more than 50%
nodes. Chameleon, Squirrel, andWisconsin are heterophilous graphs
with more than half nodes belonging to the strong heterophily
group. Differently, in Penn94, Cora-full, and Ogbn-arxiv, neither
strong homophily nor strong heterophily makes up over 50% of
the whole set. They contain nodes mixing with different levels of
homophily ratio and are called semi-homophilous graphs.

The performance of GNNs trained on semi-homophilous graphs
tends to be biased towards homophilous nodes. Empirical evidence
is shown in Figure 1, where we conduct a group-wise evaluation
of four representative GNNs on Cora-full w.r.t. the level of ho-
mophily ratio. For strong homophilous nodes (ratio larger than 0.75),
the accuracy is close to 0.99. However, for strong heterophilous
nodes (ratio smaller than 0.25), the accuracy ranges from 0.48 to 0.74.
For both homophilous GNNs (GCN and GAT) and heterophilous
GNNs (H2GCN and GPR-GNN), the performance gap exists with a
range from 0.25 to 0.5. The significant performance gap between
homophilous and heterophilous nodes will lead to serious issues in
real-world applications, such as unstable online performances and
unfair services across users.

It is however non-trivial to mitigate such bias in GNNs. The first
challenge lies in the difficulty of distinguishing homophilous and
heterophilous nodes due to the unavailable labels. For transductive
node classification, only part of node labels are available on the
whole graph during the training phase. As a result, the node-level
homophily ratio should be carefully considered. As demonstrated
in Figure 2, lacking the label of node 5 will make node 1 and node 4
be incorrectly recognized as homophilous nodes. The second chal-
lenge is that the GNN model is hard to be trained to learn nodes

of homophily and heterophily adaptively. For homophilous nodes,
messages passing from neighbors can be useful since they have
the same label. But heterophilous nodes may not extract benefi-
cial information from neighbors due to the diverse classes they
belong to. Therefore, it is challenging to train an unbiased GNN on
semi-homophilous graphs with a balanced performance on both
homophilous and heterophilous nodes.

To address the above challenges, we propose an Uncertainty-
aware Debiasing (UD) framework to mitigate the bias issue on
semi-homophilous graphs. For the first challenge, we differentiate
heterophilous nodes from homophilous ones by using uncertainty
of GNN predictions instead of node labels. The idea is that GNN
exhibits high model uncertainty on heterophilous nodes where the
GNN aggregates diverse messages from neighbors. As such, the
predictions of heterophilous nodes will show a wider variance. In
this light, we devise an uncertainty estimation module to approx-
imate the model uncertainty of GNN predictions. For the second
challenge, we propose a debiased training module to obtain a debi-
ased prediction based on the estimated uncertainty and the output
of the biased model. In particular, we prune the biased GNN model
by removing some redundant weights and retraining it with certain
nodes. Then the redundant weights are trained from scratch on
nodes with high uncertainty scores to mitigate the bias.

We integrate the above two stages of uncertainty estimation
and debiased training into general GNN frameworks and name
our model as Uncertainty-aware Debiased Graph Neural Network
(UD-GNN). Our contributions can be listed as follows.

• We reveal a severe bias issue of current GNNs regarding
node-level homophily and propose an uncertainty-aware
debiasing framework to obtain debiased GNNs.

• We design two universal modules for uncertainty estima-
tion and debiased training, which estimates the uncertainty
of GNN predictions and mitigates the bias towards the ho-
mophilous nodes, respectively.

• Extensive experiments are conducted on both synthetic and
benchmark datasets to verify the rationality and effective-
ness of the proposed framework.

2 PRELIMINARIES
In this work, we denote a graph as G = (V,A,X), where V =

{𝑣1, . . . , 𝑣𝑁 } is the set of nodes, X ∈ R𝑁×𝐷 denotes node features,
and A ∈ {0, 1}𝑁×𝑁 is an adjacency matrix representing the con-
nections between nodes. Note that 𝑁 and 𝐷 represent the number
of nodes and features, respectively. Besides, we denote the labels of
node as Y ∈ {0, 1}𝑁×𝐶 where 𝐶 is the number of classes.

2.1 Homophily Measure
Definition 2.1 (Graph-level Homophily Ratio). Given a graph G =

(V,A,X) and the node labels Y, graph-level homophily ratio ℎG is
defined as the fraction of intra-class edges. Formally, ℎG =

|Eintra |
|A | ,

where Eintra = {(𝑢, 𝑣) | 𝐴𝑢𝑣 = 1 ∧ y𝑢 = y𝑣}.

Definition 2.2 (Node-level Homophily Ratio). As to a node 𝑣 in
G, the node-level homophily ratio ℎ𝑣 is defined as ℎ𝑣 = |E𝑣∩Eintra |

|E𝑣 | ,
where E𝑣 = {(𝑢, 𝑣) | 𝐴𝑢𝑣 = 1} is the set of edges linked to 𝑣 .
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Figure 2: Demonstration of graph-level and node-level ho-
mophily ratio. If the label of node 5 is unknown, two het-
erophilous nodes (node 1 and 4 in the Left) change to be
homophilous (Right) from the perspective of node-level ho-
mophily ratio. The Right graph-level homophily ratio is
higher than the Left. The partially-available information
gives unreliable homophily measures.

According to the node-level homophily ratio, V can be divided
into homophilous node set Vhomo and heterophilous node set
Vheter, satisfying Vhomo ∪Vheter = V andVhomo ∩Vheter = ∅.

An example of graph-level and node-level homophily ratio is
demonstrated in Figure 2. In graph G, 3 of 7 edges connect two
nodes with the same label thus the graph-level homophily ratio
is 3

7 . If one of the node label is unknown, as shown in graph G′,
edges with unknown node labels are not taken into account.

2.2 Categorization of Graph Benchmarks
We systematically categorize graph benchmarks from two-level
homophily measure. Homophilous graphs have relatively high
graph-level homophily ratio close to 1, where Cora, Citeseer, and
PubMed are typical examples.Non-homophilous graphs have rel-
atively low graph-level homophily ratio near 0 and are summarized
in [25] and [20].

Non-homophilous graphs can be further categorized to semi-
homophilous graphs and heterophilous graphs from the per-
spective of node-level homophily ratio. As illustrated in Figure 1,
heterophilous nodes are grouped into strong heterophily or weak
heterophily according to the level of homophily ratio and so are ho-
mophilous nodes. Semi-homophilous graphs have nodes evenly
distributed across four groups and none of them exceeds half of
the whole. While heterophilous graphs have over 50% nodes
belonging to strong heterophily.

2.3 Problem Statement
We mainly follow the common setting of node classification, where
the target is to learn a 𝐶-way classification function to predict the
unlabeled nodes in a semi-homophilous graph. Formally,

𝑓W : (A,X) → Y, (1)

whereW denotes the parameters of the function. The parameters
are typically learned over a set of labeled nodes by minimizing a
classification loss such as cross-entropy.

The existing studies design different GNNs as the classification
function, which are largely focused on the overall classification
accuracy. Our setting further emphasizes the bias issue of GNNs
and requires the model prediction to maintain both high accuracy
and low model bias. Here the model bias refers to that GNNs trained
on semi-homophilous graphs perform worse on heterophilous set
than the same model trained only on the heterophilous part of the
graph, resulting in a larger performance gap between homophilous
and heterophilous nodes.

Relation to heterophily. The benchmark graphs are differ-
ent. Our main focus is to mitigate the bias of GNNs on semi-
homophilous graphs while GNNs designed for heterophily aim
to improve the performance on heterophilous graphs.

Relation to fairness. The assumptions are different. The group
disparity-based fairness model assumes that the outcome is invari-
ant to the group but this does not hold in our case. The disparity
between homophily and heterophily is not necessarily zero because
the baselines for them are different.

3 METHODOLOGY
In this section, we present the proposed UD-GNN framework.
Firstly, we give an overview of the whole framework. Then, we de-
tail the uncertainty estimation process in Section 3.2 and debiased
training process in Section 3.3.

3.1 Overview
We illustrate the pipeline of the proposed framework on an example
graph in Figure 3, which consists of two modules: uncertainty
estimation and debiased training.

In the uncertainty estimation module, we adopt Monte Carlo
dropout variational inference [8] method to estimate the model
uncertainty of the prediction. The training node set is divided into
a confident node set and an uncertain node set according to their
uncertainty scores. In the debiased training module, the biased
weights are pruned to remove redundant parameters and retrained
with the confident set. The pruned parameters are trained from
scratch with the uncertain set to mitigate the bias issue.

3.2 Uncertainty Estimation
Due to the difficulty in extracting information from heterophilous
neighborhood, the output of GNNs may exhibit relatively high
model uncertainty for heterophilous nodes. To capture model un-
certainty, Bayesian graph neural networks replace the biased GNN’s
weight parameters W𝑏 with distributions over these parameters,
like a Gaussian prior distribution W ∼ N(0, 𝐼 ). Given the graph
data (A,X) and the prediction Ŷ, the model likelihood for node
classification can be defined as Eq. (2).

𝑝 (Ŷ | A,X) =
∫
W

𝑝 (Ŷ | W,A,X)𝑝 (W | A,X)dW (2)

To overcome the intractable inference of evaluating the true
model posterior 𝑝 (W|A,X) in Eq. (2), we utilizeMonte Carlo dropout
variational inference [8] to approximate it, which defines a simple
distribution 𝑞𝜃 (W) by multiplying a deterministic model weight
W𝑏 with a binary mask 𝑀 following Bernoulli distribution with
parameter 𝜃 , as demonstrated in Eq. (3).
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Figure 3: The framework of UD-GNN on an example graph. The input is a graph with three homophilous nodes (1,4,6), two
heterophilous nodes (2,3) and one node (5) without label. In the uncertainty estimation module, Ŵ1, . . . , Ŵ𝑇 are sampled from
the dropout distribution, and the nodes are divided into confident set Vcon and uncertain set Vunc according to the uncertainty
score. The obtained parameter W𝑏 is biased. In the debiased training module, the redundant weights in W𝑏 are identified with
𝑍 (a). ThenW𝑏 is pruned (b) and retrained withVcon (c). With these parameters frozen (d), the other parameters are trained
withVunc (e) and the resultingW𝑑 is debiased.

𝑃 (𝑀) ∼ Bernoulli(𝜃 )
𝑞𝜃 (W) ∼ 𝑀 ⊙ W𝑏

(3)

During the MC dropout variational inference, {Ŵ𝑡 }𝑇𝑡=1 are sam-
pled from 𝑞𝜃 (W). 𝑌𝑡 = 𝑓Ŵ𝑡

(A,X) is the prediction under the sam-
pled weight Ŵ𝑡 . The deterministic model weight W𝑏 is trained by
minimizing the cross-entropy loss defined in Eq. (4), where 𝜃 is a
hyper-parameter.

L(W𝑏 ) = − 1
𝑇

𝑇∑︁
𝑡=1

Y log
(
𝑓Ŵ𝑡

(A,X)
)
+ 1 − 𝜃

2𝑇
∥W𝑏 ∥2 (4)

After the training process, the model uncertainty score 𝑈 is
estimated by Eq. (5), which is a 𝑁 -dimensional vector indicating
the uncertainty score of each node.

E[Ŷ | A,X] =
∫

Ŷ𝑝 (Ŷ | A,X)dŶ ≈ 1
𝑇

𝑇∑︁
𝑡=1

𝑌𝑡

𝑈 (Ŷ | A,X) = Var(Ŷ | A,X) ≈ 1
𝑇

𝑇∑︁
𝑡=1

(
𝑌𝑡 − E[Ŷ | A,X]

)2 (5)

3.3 Debiased Training
The biased parameters are denoted by W𝑏 , and the well-trained
graph neural network is represented by 𝑓W𝑏

. The purpose of this

subsection is to train a debiased graph neural network 𝑓W𝑑
from

𝑓W𝑏
, with the performance gap to be mitigated.

The basic idea is to restrict the complexity of the biased model on
the confident nodes and restore themodel capacity for the uncertain
nodes. Inspired by continual learning [9, 17], we prune the model
parameters for the confident nodes by replacing part of parameters
with zero and freeze the other ones. Then parameters which have
been set to zero are retrained with the uncertain nodes.

Specifically, the training nodes, denoted byVtrain, can be divided
into a confident node set Vcon and an uncertain node set Vunc
according to the uncertainty score 𝑈 (Ŷ | A,Xtrain) estimated by
Eq. (5). The debiasing ratio 𝛾 is defined to be 𝛾 =

|Vcon |
|Vunc | , where the

two sets satisfyVcon ∪Vunc = Vtrain andVcon ∩Vunc = ∅.
The confident node setVcon refers to nodes with low uncertainty

score. Due to the bias ofW𝑏 , 𝑓W𝑏
has learnt a good representations

for Vcon. The graph neural network 𝑓W𝑏
can be pruned by remov-

ing unimportant parameters inW𝑏 of which the absolute value is
almost zero3. 𝑍 is a 0−1 pruning mask ofW𝑏 with 0 in the position
of pruned parameters and 1 otherwise.

After pruning, the GNN performance can be affected because of
the big changes in the network structure. We perform retraining
over 𝑍 ⊙ W𝑏 on Vcon so as to regain the knowledge learnt by
the biased model. After this step, there are some free parameters
(1 − 𝑍 ) ⊙ W𝑏 , which will be optimized onVunc.

3We simply set the threshold to be 1e-5 and weights smaller than that would be pruned.
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Algorithm 1: UD-GNN: Uncertainty-aware Debiased
Graph Neural Network
Input: G = (V,A,X): A semi-homophilous graph,Vtrain:

Set of training nodes, Y: Label of training nodes, 𝑇 :
Number of Monte Carlo samples, 𝜃 : Dropout rate for
uncertainty estimation, 𝛾 : Debiasing ratio.

Output: The debiased parameters W𝑑 .
1 Choose message passing architectures for biased GNN 𝑓W𝑏

and debiased GNN 𝑓W𝑑
;

2 Initialize parametersW𝑏 andW𝑑 ;
3 for 𝑡 = 1, . . . ,𝑇 do
4 Sample a weight distribution Ŵ𝑡 from 𝑞𝜃 (W) w.r.t. (3);
5 TrainW𝑏 and {Ŵ𝑡 }𝑇𝑡=1 by minimizing Eq. (4);
6 Estimate the model uncertainty𝑈 w.r.t. Eq. (5);
7 DivideVtrain into Vcon andVunc according to𝑈 such that

𝛾 =
|Vcon |
|Vunc | ;

8 Prune the network 𝑍 ⊙ W𝑏 and retrain withVcon;
9 Freeze 𝑍 ⊙ W𝑏 and train (1 − 𝑍 ) ⊙ W𝑏 inW𝑑 by

minimizing Eq. (7);
10 returnW𝑑 .

The uncertain node set Vunc contains nodes with high uncer-
tainty, which indicates that the model is not sure about the pre-
dictions of these nodes. W𝑑 is partially trained to minimize the
cross-entropy loss Eq. (7) onVunc, with the retrained parameters
𝑍 ⊙ W𝑏 frozen as shown in Eq. (6).

W𝑑 = (1 − 𝑍 ) ⊙ W𝑏 + stop_gradient(𝑍 ⊙ W𝑏 ) (6)

L(W𝑑 ) = − 1
|Vunc |

∑︁
𝑣∈Vunc

𝑦𝑣 log
(
𝑓W𝑑

(A,X𝑣∪N𝑣
)
)

(7)

The overall training algorithm is summarized in Algorithm 1.
Given a semi-homophilous graphG and the training node setVtrain,
we first choose the GNN architecture for 𝑓W𝑏

and 𝑓W𝑑
(Line 1)

then initialize W𝑏 and W𝑑 (Line 2). Next, we sample 𝑇 weight
distributions for dropout variational inference (Line 4). The biased
weight together with sampled weights is trained to minimize Eq. (4)
(Line 5). After that, the uncertainty score of each node can be
estimated (Line 6), andVtrain is divided intoVcon andVunc (Line 7).
The network is pruned with 𝑍 ⊙W𝑏 and retrained withVcon (Line
8). Finally, the masked parameters are frozen and the unmasked
parameters are optimized by minimizing Eq. (7) (Line 9).

In the testing phase, the testing nodes, denoted by Vtest, can
be divided into the confident node set and the uncertain node
set according to the debiasing ratio 𝛾 in the training set. For the
confident testing nodes, the predictions are obtained from 𝑓𝑍⊙W𝑑

and other predictions are conducted by 𝑓W𝑑
.

4 EXPERIMENTS
In this section, we investigate the effectiveness of the proposed
UD-GNN model on both synthetic and benchmark datasets, which
belong to semi-homophilous graphs, with the aim of answering the
following research questions.

• RQ1: Does UD-GNN outperform the state-of-the-art meth-
ods on semi-homophilous graphs?

• RQ2: How do the key components contribute to the results?
• RQ3: Why does uncertainty estimation benefit the debiasing
between homophily and heterophily?

• RQ4: Does UD-GNN work well on heterophilous graphs?
• RQ5: What is the sensitivity of UD-GNN with respect to dif-
ferent debiasing ratios, mixing ratios and number of classes?

4.1 Experimental Setup
4.1.1 Datasets. As depicted in Figure 1, we conduct experiments on
three semi-homophilous graphs, collected from non-homophilous
benchmarks [20]. High-homophilous graphs are not our focus since
they do not suffer from the bias issue. Besides, we construct a syn-
thetic semi-homophilous graph based on cSBM [4]. The mixing
ratio in cSBM is defined as the fraction of homophilous nodes
and heterophilous nodes, which is further analysed in Section 4.6.
The statistics of the datasets are reported in Table 1. Nodes with
node-level homophily ratios smaller than 0.5 are regarded as het-
erophilous nodes, and we report the fraction of heterophilous nodes
in each dataset as shown in the table. Detailed descriptions can be
referred to Appendix A.1.

Table 1: Statistics of the datasets.

Dataset #Node #Edge #Class #Feat %Heter

cSBM 20,000 998,766 10 1,024 50%
Penn94 41,554 1,362,229 2 4,814 49%
Cora-full 19,793 126,842 70 8,710 44%
Ogbn-arxiv 169,343 1,166,243 40 128 37%

4.1.2 Compared Methods. We compare with several state-of-the-
art graph neural network methods, including GCN [19], GAT [33],
Mixhop [1], GPR-GNN [3], JK-Net [36], H2GCN [41], CPGNN [40],
WRGAT [31], U-GCN [16], to verify the effectiveness of our pro-
posed method on semi-homophilous graphs. Details of the com-
pared methods can be found in Appendix A.2.

UD-GNN is a general name for all GNNs equipped with our
Uncertainty-aware Debiasing (UD) framework. For GCN, GAT,
Mixhop, GPR-GNN, VA denotes the vanilla version and UD is the
proposed framework. We also derive two variants of UD-GNN to
compare and analyze the performances of its each component. D-
GNN removes uncertainty estimation and trains a separate model
to discriminate homophilous nodes from heterophilous nodes for
debiasing. U-GNN removes debiased training and applies Focal
loss based on the estimated uncertainty scores.

4.1.3 Experimental Settings. For all the compared methods, we
report the average value and standard deviation of 5 runs.4 The
hyper-parameters in UD-GNN include the number of samples 𝑇 ,
dropout rate 𝜃 , and the debiasing ratio 𝛾 . 𝑇 is used for uncertainty
estimation and is set to be 5 in our experiments. Since the base
GNN is efficient and fast, running 𝑇 times of the model would
4Exceptionally, the experiment of H2GCN on ogbn-arxiv was conducted on CPU due
to the out-of-memory issue in GPU. It takes around a week for a run thus we only
report the results of this run and the deviation is 0.
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Table 2: Performance comparison for node classification on semi-homophilous graphs. The best results are bolded.

Dataset cSBM Penn94 Cora-full Ogbn-arxiv

Metric Acc ↑ 𝛿ho ↓ 𝛿he ↓ Acc ↑ 𝛿ho ↓ 𝛿he ↓ Acc ↑ 𝛿ho ↓ 𝛿he ↓ Acc ↑ 𝛿ho ↓ 𝛿he ↓

GCN
VA 47.30±0.43 1.23 9.11 82.06±0.19 3.89 3.32 68.81±0.29 2.8 3.11 71.17±0.11 0.03 7.76
UD 49.39±0.16 2.31 4.42 82.96±0.21 3.93 1.31 69.70±0.24 3.51 1.12 72.06±0.17 1.88 0.28

GAT
VA 50.44±0.29 1.68 8.27 79.85±0.73 5.48 8.63 69.24±0.27 1.82 3.27 69.90±0.12 0.43 6.24
UD 52.66±0.31 2.04 3.12 83.54±0.20 5.24 0.89 70.85±0.34 2.21 1.18 71.07±0.35 1.65 0.65

Mixhop
VA 51.31±0.41 0.93 8.25 82.14±0.21 2.37 5.36 69.11±0.31 2.26 3.94 72.80±0.23 0.7 5.63
UD 52.51±0.17 1.84 3.17 83.68±0.65 3.22 2.01 70.01±0.34 2.94 2.67 73.20±0.09 2.13 0.2

GPRGNN
VA 53.79±0.15 1.29 9.23 76.77±0.25 5.58 10.92 70.15±0.30 1.61 4.92 70.98±0.17 0.95 5.84
UD 54.80±0.20 1.62 2.48 80.70±0.24 6.82 0.91 71.09±0.30 1.65 2.36 71.32±0.13 2.48 1.04

JK-NET 50.68±0.38 2.67 6.21 81.26±0.23 3.35 8.24 68.12±0.23 2.34 3.23 70.66±0.19 0.72 8.23
H2GCN 51.93±0.25 2.46 8.26 81.63±0.16 4.16 7.12 70.82±0.82 3.35 3.67 70.14±0.00 0.28 6.82
CPGNN 51.84±0.67 2.03 5.26 80.92±0.67 4.12 8.21 70.38±0.23 2.35 3.26 69.24±0.52 0.52 6.27
WRGAT 52.48±0.28 1.89 6.26 82.32±0.83 3.12 6.23 71.32±0.92 2.92 4.38 71.23±0.67 0.46 6.23
U-GCN 52.74±0.72 1.73 8.23 82.31±0.89 5.23 4.21 70.47±0.78 1.92 4.21 70.27±0.81 0.61 5.98

not impose much computational cost. 𝛾 depends on the fraction
of heterophilous nodes in the dataset and is tuned around 1 : 1 in
most cases. Details can be referred to Appendix A.4.

4.1.4 Metrics. We adopt Accuracy to measure the performance of
all the compared methods. The difference of Accuracy between the
ideal model and the actual model is used to evaluate the relative
model bias, denoted by 𝛿 = eval (Y, 𝑓W∗ (A,X)) −eval(Y, 𝑓W (A,X)).
Here, eval refers to the evaluation function like Accuracy and W∗

denotes the intended model parameters without bias. We compute
𝛿 on the homophilous set and the heterophilous set, denoted by 𝛿ho
and 𝛿he respectively. Higher accuracy indicates better performance
of an approach, and lower 𝛿 represents lower model bias.

The intended parameters are approximated by training GNNs
only on the homophilous or heterophilous set to avoid possible
model bias. The highest result of 5 runs is chosen to be the in-
tended score for evaluation and the result relies on specific model
architectures.

4.2 Performance Comparison (RQ1)
To answer RQ1, we evaluate the performance of all the compared
GNNs on four semi-homophilous graph datasets. The scores of
accuracy and relative bias are reported in Table 2. We have the
following observations.

Firstly, the relative bias for both homophilous and heterophilous
nodes exists for all compared methods, with heterophilous bias 𝛿he
larger than homophilous bias 𝛿ho. We conclude that graph neural
networks always suffer from the bias issue and the classification
accuracy would be improved if such bias can be mitigated.

Secondly, combining the UD framework with GCN, GAT, Mix-
hop, and GPR-GNN consistently mitigates the bias issue since the
accuracy of UD is higher than VA and the heterophilous bias 𝛿he
of UD is much lower than VA. The homophilous bias 𝛿ho of UD
increases a little compared with VA because the original network
for the confident set is pruned. However, the overall bias score of

Figure 4: Ablation Study of UD-GNN on Penn94.

UD, i.e. the sum of 𝛿ho and 𝛿he, declines consistently and the best
results in Table 2 are bolded in terms of the sum bias. Based on the
results of uncertainty estimation, the debiased training strategy is
effective in debiasing GNNs between homophily and heterophily.

Finally, the combination of UD framework with GNNs exhibits
different performances for different datasets. For cSBM and Cora-
full, UD-GPR-GNN achieves the best accuracy and the lowest bias
𝛿 . For Penn94 and Ogbn-arxiv, the accuracy of UD-Mixhop is the
highest while UD-GPRGNN and UD-GCN achieve the most bias
reduction respectively. We think this is due to the complexity of
the datasets. For benchmark datasets Penn94 and Ogbn-arxiv, het-
erophilous nodes may imply complex patterns, thus Mixhop with
high-order neighbors can capture these regularities more accurately.
The performance of heterophilous nodes is higher, and the gap is
smaller. For synthetic dataset cSBM, since the connection rule is
artificially designed, GNNs using one-hop neighbors can work well.

4.3 Ablation Study (RQ2)
To answer RQ2, we identify two key modules of UD-GNN, namely
uncertainty estimation and debiased training, and verify their effec-
tiveness by removing each module respectively. Due to the limited
space, we only report the results of Penn94 in Figure 4 for demon-
stration and the other three datasets also exhibit similar trends.
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(a) cSBM (b) Penn94 (c) Cora-full (d) Ogbn-arxiv

Figure 5: The relationship between estimated uncertainty score and node-level homophily ratio. For the four datasets, nodes
are equally divided into 10 bins according to the sorted uncertainty score. The x-axis denotes 10 bins of nodes with ascending
uncertainty scores. The left y-axis indicates the fraction of homophilous and heterophilous nodes in each bin. The right y-axis
corresponds to the average node-level homophily ratio in each bin, which is shown by the broken line.

Since our main focus is the bias issue, we only report the relative
bias and denote the sum of 𝛿ho and 𝛿he as 𝛿 below for brevity. The
full model UD-GNN always achieves the lowest 𝛿 compared with
the two variants D-GNN and U-GNN, which indicates that each
module is necessary for mitigating the bias issue.

In addition to the vanilla GNN, D-GNN achieves the second high-
est bias value. It is hard to train a classifier to identify homophilous
or heterophilous nodes since partial label information gives unre-
liable homophily measures, as mentioned in Figure 1. The bias of
D-GNN is large due to the estimation error of the trained homophily
classifier in the variant.

For U-GNN, the score of 𝛿 is always higher than UD-GNN. The
focal loss can reweight uncertain nodes and confident nodes in the
back-propagation step from the loss function to prevent the model
from getting biased to homophilous nodes but the effectiveness is
weaker than the debiased training which UD-GNN does.

4.4 Extensive Study (RQ3)
To answer RQ3, we demonstrate the output of the uncertainty es-
timation module from GAT in Figure 5. For the four datasets, we
divide nodes into 10 bins equally according to the sorted uncer-
tainty score. The left y-axis indicates the fraction of homophilous
and heterophilous nodes in each bin. The right y-axis corresponds
to the average node-level homophily ratio in each bin. As the un-
certainty increases, the fraction of heterophily gets larger, and the
average node-level homophily ratio gets lower. Especially, the node-
level homophily ratio in cSBM is either 0 (strong heterophily) or 1
(strong homophily). Therefore, the average ratio for each bin lies
exactly in the boundary of two bars. It is concluded that the uncer-
tainty estimation module is effective in differentiating heterophily
from homophily, and the resulting debiased training module gets
meaningful division of nodes for further training.

4.5 Heterophilous Graphs Performance (RQ4)
To answer RQ4, we further evaluate the performance of UD-GNN
on three heterophilous graphs, namely Chameleon, Squirrel, Wis-
consin. The detailed description can be found in Appendix A.1 and
the results are reported in Table 3. Since most nodes in the datasets

Table 3: Performance on Heterophilous Graphs.

Dataset Chameleon Squirrel Wisconsin

Mixhop
VA 58.25±1.83 42.86±1.48 73.83±6.82
UD 59.23±1.24 43.92±1.42 74.23±5.92

GPRGNN
VA 64.36±0.87 46.83±0.84 79.23±3.81
UD 66.23±1.03 47.92±0.25 81.29±2.34

JK-NET 53.95±1.14 33.51±1.32 48.39±5.28
H2GCN 57.39±1.96 35.23±1.35 85.88±4.92
CPGNN 59.11±1.23 36.27±1.29 86.29±4.28
WRGAT 63.26±1.67 41.26±1.37 86.28±2.46
U-GCN 54.07±1.57 34.39±1.34 69.89±2.54

are heterophilous, we only test on heterophilous GNNs and do not
compute model bias 𝛿 . On heterophilous benchmarks, UD-GNN
improves the performance due to the refining of uncertain nodes in
the debiased training and achieves the best results on Chameleon
and Squirrel, with comparable performance on Wisconsin.

4.6 Sensitivity Analysis (RQ5)
To answer RQ5, we further evaluate the sensitivity of UD-GNN
from three aspects, namely debiasing ratio, mixing ratio, and the
number of classes. Due to the limited space, we only report the
results of UD-GCN or UD-GAT for better visualization. Other UD-
GNNs also exhibit similar trends of sensitivity. The sum of 𝛿ho and
𝛿he is denoted as 𝛿 below for brevity.

The debiasing ratio is the threshold that divides the nodes into
the confident set and the uncertain set, which has been defined in
Section 3.3. We evaluate the sensitivity of UD-GCN and UD-GAT on
ogbn-arxiv, and the results are shown in Figure 6(a) and Figure 6(d).
With the size of confident nodes increasing, the accuracy rises to the
top then falls, and the 𝛿 increases then keeps stable. We conclude
that there is a trade-off between pruning and debiasing for UD
framework. If the size of uncertain nodes is larger, the performance
of homophily would decline. And if the size of confident nodes is
larger, the model would be easily biased.
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(a) Acc on ogbn-arxiv with different debiasing ratios (b) Acc on cSBM with different mixing ratios (c) Acc on cSBM with different classes

(d) 𝛿 on ogbn-arxiv with different debiasing ratios (e) 𝛿 on cSBM with different mixing ratios (f) 𝛿 on cSBM with different classes

Figure 6: Sensitivity of UD-GNN with respect to debiasing ratio (a,d), mixing ratio (b,e), and number of classes (c,f). The marker
point represents the mean value of 5 runs, and the shaded area corresponds to the standard deviation.

The mixing ratio measures the extent of mixing between ho-
mophilous and heterophilous nodes. We adjust the mixing ratio
from 1 : 4 to 4 : 1 and test the performance of GCN and UD-GCN.
As demonstrated in Figure 6(b) and Figure 6(e), with the fraction
of heterophily decreasing, the overall accuracy increases due to
the increase of homophily. Our UD-GCN framework consistently
mitigates the bias effectively under different settings.

Finally, we change the number of classes in the synthetic dataset
to test the bias of GCN and debiasing ability of UD-GCN. As shown
in Figure 6(c) and Figure 6(f), when the number of classes is smaller
than 3, there is no bias since the accuracy is around 1 and the 𝛿 is
near 0. As the number of classes grows larger than 5, the accuracy
declines, and the 𝛿 increases, which indicates the bias issue. UD-
GCN is effective in debiasing GCN since it achieves lower bias and
maintains higher accuracy.

5 RELATEDWORK
This section introduces previous studies on heterophily and uncer-
tainty in graph neural networks.

5.1 Heterophily in Graph Neural Networks
Heterophily [26] was first proposed as a concept in communication
research, which refers to individuals who interact are different with
respect to certain attributes. Opposite to this concept, homophily
has been widely investigated in social networks [23]. Graph neural
networks have been shown as low-pass filters [24] and can be
characterized by smoothing and de-noising node features [7], thus
tend to work well on homophily and fail on heterophily.

Several kinds of strategies can be applied to tackle graphs with
heterophily. A direct way is to model the label similarity of the
connected nodes, like GAM [30] and CS-GNN [10]. Another way
is to design trainable weights for the aggregation step in GNNs.
GPR-GNN [3] combines Generalized PageRank scheme with GNNs
that learns the GPR weights adaptively. LA-GCN [37] unifies a
learnable aggregator for GCN and assigns different importances to
both nodes and features.

Modeling label similarities or designing trainable weights can
model the heterophily explicitly or implicitly. However, they rely
on the node labels for training. Different from these two strategies,
the proposed uncertain estimation can discriminate heterophily
from homophily without the help of node labels.

Besides, adding other information like higher-order neighbors or
label compatibility has been demonstrated to be helpful on graphs
with heterophily. H2GCN [41] identifies three key designs for boost-
ing heterophily learning. CPGNN [40] incorporates an interpretable
compatibility matrix for modeling the heterophily level in the graph,
which can be learned in an end-to-end fashion. WRGAT [31] im-
proves the assortativity of graphs by constructing a computational
graph based on structural information. U-GCN [16] is a new uni-
versal GCN framework extracting information from 1-hop, 2-hop
and kNN networks simultaneously.

The methods mentioned above remedy the limitations of current
GNNs on heterophilous graphs. Different from them, our major
concern in this work is the bias issue of GNNs trained on semi-
homophilous graphs.
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5.2 Uncertainty in Graph Neural Networks
Predictive uncertainty estimation [18] has been explored in deep
neural networks with Bayesian approximation. For graph neural
networks, multidimensional uncertainty types can also be estimated.
S-BGNN [38] is a multi-source uncertainty framework of GNNs
for misclassification detection and out-of-distribution detection.
EV-GCN [15] designs a learnable adaptive population graph and
achieves superior performance on brain analysis and ocular disease
prediction. UAG [5] incorporates a Bayesian uncertainty technique
to develop an uncertainty-aware attention for adversarial attacks on
GNNs. CGI [6] estimates the causal effect of a node’s local structure
for the prediction using Monte Carlo estimation.

The above methods investigate uncertainty in GNNs for different
tasks like disease prediction, adversarial attack, misclassification
detection, etc. Different from them, we estimate the uncertainty in
GNNs to mitigate the bias issue for semi-homophilous graphs and
propose an uncertainty-aware debiasing framework to narrow the
performance gap between homophilous and heterophilous nodes.

6 CONCLUSION
In this work, we investigate a challenging task for graph neural
networks on semi-homophilous graphs, i.e. the bias issue between
homophily and heterophily. Suffering from this issue, graph neural
networks always exhibit a performance gap between homophilous
and heterophilous nodes. To overcome this problem, we propose
an Uncertainty-aware Debiasing framework which retrains the
parameters on nodes with high uncertainty, and inherits the outputs
of the biased model for nodes with low uncertainty. Through our
extensive experiments on both synthetic and benchmark datasets,
UD-GNN is verified to effectively debias graph neural networks on
semi-homophilous graphs.
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A REPRODUCIBILITY
A.1 Datasets
cSBM [4] refers to contextual stochastic block models and has been
used for synthetic datasets in [3]. We modify the graph generation
process to multi-class version and mix nodes of homophily and
heterophily for the experiments in this work.

Penn94 [32] is a friendship network from the Facebook 100
networks of university students from 2005, where nodes represent
students. Each node is labeled with the reported gender of the user.
The node features are major, second major/minor, dorm/house, year,
and high school.

Cora-full [2] is a citation network labeled on the paper topic.
Most approaches test the performance on a small subset of this
dataset, which has 2708 nodes and strong homophily. We adopt the
entire network since it is a typical semi-homophilous graph.

Ogbn-arxiv [11] is the citation network between all Computer
Science (CS) arXiv papers indexed by MAG [34]. Each node is an
arXiv paper, and each directed edge indicates that one paper cites
another one. Each paper comes with a 128-dimensional feature
vector obtained by averaging the embeddings of words in its title
and abstract. The task is to predict the 40 subject areas of arXiv CS
papers, e.g., cs.AI, cs.LG, and cs.OS, which are manually labeled by
the paper’s authors and arXiv moderators.

Chameleon and Squirrel collected by [27] are networks of
hyperlinked web pages on Wikipedia related to animal topics. The
nodes (here pages) are labelled from one of 5 classes based on
the average traffic (views) they received. Node features are bag-of-
words representation of nouns in the respective pages.

Wisconsin [25] is collected as part of CMU WebKB project.
Nodes are university web pages and edges are hyperlinks between
them. Node labels are one of student, project, course, staff or faculty.
Node features are bag-of-words representation of the web pages.

Table 4: Statistics of heterophilous graphs.

Dataset #Node #Edge #Class #Feat

Chameleon 2,277 36,101 5 2,325
Squirrel 5,201 217,073 5 2,089

Wisconsin 251 515 5 1,703

A.2 Compared Methods
• GCN [19]: graph convolution network achieved by localized
first-order approximation of spectral graph convolutions.

• GAT [33]: graph attention network.
• Mixhop [1]: repeatedly mixing feature representations of
neighbors at various distances.

• GPR-GNN [3]: a Generalized PageRank GNN architecture
that learns the GPR weights adaptively.

• JK-Net [36]: a new aggregation scheme that can adapt neigh-
borhood ranges to nodes individually.

• H2GCN [41]: graph convolution network with designs that
increase representation power under heterophily.

• CPGNN [40]: an approach that models an interpretable class
compatibility matrix into GNNs.

• WRGAT [31]: an approach that improves the assortativity
of graphs with local mixing patterns.

• U-GCN [16]: a new universal GCN extracting information
from 1-hop, 2-hop and kNN networks simultaneously.

A.3 Implementation Details
UD-GNN is implemented in Pytorch 1.9.0 with Python 3.8, and
experiments are running on a Ubuntu 18.04.1 server with 40 cores
and 512GBmemory. GCN, GAT are implemented based onDGL [35].
JK-Net, Mixhop, GPR-GNN, H2GCN, CPGNN, WAGAT, U-GCN are
implemented using the source code provided by the authors.

The train/valid/test split ratio is set to be 40%/ 20%/40% for cSBM,
80%/ 10%/10% for Penn94, and 70%/ 10%/20% for Cora-full. For Ogbn-
arxiv, we follow the realistic split provided by the dataset, train on
papers published until 2017, validate on those published in 2018,
and test on those published since 2019.

A.4 Hyper-parameter Settings
The parameters of UD-GNN are optimized with RMSprop [28]
optimizer. Hyper-parameter tuning is conducted using grid search
for most methods. In UD-GNN, 𝑁epoch = 300, 𝑇 = 5. For cSBM, the
debiasing ratio 𝛾 = 3 : 2. For Penn94, the debiasing ratio 𝛾 = 1 : 1.
For Cora-full, 𝛾 = 7 : 3. For Ogbn-arxiv, 𝛾 = 10 : 7. The head of
attention in GAT is 3. The hop of sampled neighbors in Mixhop
is set to be 2. Other hyper-parameters like learning rate (lr) and
weight decay (wd) can be referred in Table 5.

Table 5: Hyper-parameters for each dataset.

cSBM

lr wd 𝜃 #layers #hidden

GCN 0.001 0.0005 0.75 3 256
GAT 0.001 0.0005 0.75 3 256

Mixhop 0.001 0.0005 0.75 3 256
GPRGNN 0.001 0.0005 0.75 3 256

Penn94

lr wd 𝜃 #layers #hidden

GCN 0.005 0.01 0.5 2 512
GAT 0.005 0.01 0.5 2 512

Mixhop 0.001 0.005 0.5 2 512
GPRGNN 0.001 0.005 0.5 2 512

Cora-full

lr wd 𝜃 #layers #hidden

GCN 0.001 0.01 0.5 3 1024
GAT 0.001 0.01 0.5 3 1024

Mixhop 0.001 0.01 0.5 3 1024
GPRGNN 0.001 0.01 0.5 3 1024

Ogbn-arxiv

lr wd 𝜃 #layers #hidden

GCN 0.005 0.01 0.5 3 256
GAT 0.005 0.01 0.5 1 256

Mixhop 0.001 0.01 0.5 3 256
GPRGNN 0.001 0.01 0.5 3 256
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