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Abstract
Ethereum, the most popular public blockchain with the capability of smart contracts and
the cryptocurrency Ether, is escalating in the number of account addresses and transactions
since its birth. Due to the decentralisation of the Ethereum blockchain and the anonymity
of its users, Ethereum serves as a noteworthy environment for malicious activities that are
difficult to unearth. As a result, understanding the behaviors of the account addresses on
Ethereum has become an imperative problem receiving much attention very recently. Exist-
ing works for such task mainly rely on extracting statistical features of account addresses
and applying machine learning techniques to group or identify them. However, seldom
prevailing approaches take temporal information and high-order interactions among the
account addresses into consideration. To this end, we propose a novel approach coined
THCD (Temporal High-order proximity aware Community Detection) for behavior analy-
sis on Ethereum from the perspective of graph mining. First, frequent temporal motifs are
mined over a transaction graph constructed by the Ethereum block transactions. Next, we
define the high-order proximity between two accounts based on these temporal motif occur-
rences. Finally, a novel temporal motif-aware community detection method is devised to
find account communities over the defined high-order proximity. Experiments on four real
datasets constructed from Ethereum blocks demonstrate the effectiveness of our approach.
Some discovered suspicious accounts are confirmed by real-world reports. Meanwhile,
THCD is scalable to large-scale transaction datasets.
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1 Introduction

Ethereum, proposed in late 20131 and first launched in 2015, is one of the largest and
most widely used blockchain platforms in the world. By the time of December 2019, there
have been more than 80 million distinct addresses on it with processing a total of over 600
million transactions. The number of addresses escalates more than 20 times up from around
4 million addresses on July 3, 2017.

Anonymity and decentralisation are generally two major characteristics of Ethereum.
First, the Ethereum platform does not store any personal information about users to pro-
tect their privacy, and it is known as the anonymity. However, such anonymity also might
help miscreants who take part in money stealing or laundering to evade regulation since
transactions can be completed without intermediaries and no one knows who conduct these
transactions. For example, according to the research by Carbon Black2, a total of $1.1 billion
in cryptocurrency-related thefts happened in the first half of 2018, and money laundering
was staged with the highest proportion on mixers3 and online gambling sites. Second, every
transaction is fully public and transparent to every account on Ethereum, which enables
individual account to synchronize and participate in authenticating all transactions on the
platform. It is known as the decentralisation of blockchain, which provides sufficient data
for transaction analysis to understand and mitigate the menace of malicious behaviors on
the Ethereum platform.

As a result, several recent efforts [4, 5, 14, 21, 23, 24] have begun to analyze transactions
on Ethereum to understand the behaviors of the accounts within the platform. For example,
[14, 21, 23] extracted statistical features for each account and adopted k-means clustering
algorithm to find outliers that could be anomalous accounts. [5] characterized three major
activities on Ethereum, namely money transfer, smart contract creation and smart contract
invocation, as graphs and applied statistical cross-graph analysis to address attack forensics
and anomaly detection tasks on Ethereum.

Despite the initial success achieved by the existing research, they may suffer from the
following drawbacks on understanding and modeling complex behavior patterns of the
accounts on Ethereum.

First, seldom prevailing methods take temporal information into consideration. However,
the rich temporal information associated with transactions is crucial for understanding the
accounts’ behaviors. For instance, the fabricated transactions created by the exchanges mak-
ing exaggerated trading volume are required to be completed as soon as possible to avoid
unexpected price fluctuations. As a consequence, there might be a serendipitous prolifera-
tion in a number of transactions in some small-time periods, but no obvious abnormality in
long-term statistics. It motivates us to leverage temporal information to describe accounts’
behaviors at a finer granularity.

Second, high-order interactions among accounts and addresses fail to be fully exploited.
Major current researches solely consider each account itself or the direct relation between
the sender and the receipt of the transaction. However, paradigms of the platform and

1https://github.com/ethereum/wiki/wiki/White-Paper
2https://www.carbonblack.com/2018/06/07/carbon-black-threat-report-cryp
tocurrency-gold-rush-dark-web/
3A mixer is an online software service that can swap cryptocurrencies for ones with different transaction
histories.

https://github.com/ethereum/wiki/wiki/White-Paper
https://www.carbonblack.com/2018/06/07/carbon-black-threat-report-cryp_tocurrency-gold-rush-dark-web/
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some specific purposes may derive high-order interactions among accounts or addresses,
which might become essential features to understand account behaviors on Ethereum.
For example, when transferring funds into an exchange, the deposit address will be used
as an intermediary due to the paradigms of Ethereum. Such deposit address correlates
both users and the hot wallet of the exchange. Similarly, the withdrawal address is per-
formed as the intermediary if a person wants to get his/her funds out of exchanges. For
miscreants who launder money, as another example, they might manipulate a group of
accounts to accomplish crime-specific tasks, which might incur such group of accounts
possess correlated and analogous behaviors but never form a transaction with each
other. Hence, taking high-order interactions among accounts into consideration to cap-
ture more substantial features for identifying behavior patterns on Ethereum is in urgent
demand.

To this end, we propose Temporal High-order proximity aware Community
Detection (THCD for short) for behavior analysis on Ethereum. First, a transaction graph
describing fund flows among accounts is constructed from the Ethereum transactions, and
an efficient frequent temporal motif mining method is adopted to obtain the frequent trans-
action patterns (temporal motif) in the graph. Next, we define the high-order proximity
between two accounts as the co-occurrence count in transaction pattern occurrences, and
we can derive a high-order proximity matrix of accounts based on these frequent transac-
tion patterns. Finally, a novel temporal motif-aware community detection method is devised
to find account communities over the defined high-order proximity matrix. We conduct
extensive experiments on four real datasets from Ethereum. The results demonstrate that
our method can not only outperform SOTA community detection methods in quantified
measures but also unearth some suspicious account communities that are confirmed by
real-world reports.

The main contributions of our work are the following three-fold.

– We re-examine the behavior analysis of Ethereum by incorporating both temporal infor-
mation and high-order interactions among accounts, which is seldom considered by
previous studies.

– We propose a novel temporal high-order aware community detection method, named
THCD, for behavior analysis on Ethereum. THCD centers on three technical compo-
nents, namely an efficient temporal-motif mining algorithm, a high-order proximity
computation approach and a temporal motif-aware community detection method.

– Experimental results on the real datasets from Ethereum illustrate that THCD is able
to discover abnormal accounts underpinned by high-order proximities. Some detected
fake volume exchanges and suspicious money laundering accounts are confirmed by
real-world reports.

The remainder of this paper is organized as follows. We summarize the related work in
Section 2. Section 3 presents the concepts and the research problem of this paper. Section 4
details our proposed model THCD. Section 5 explains experimental steps including data
collection and parsing, evaluation methods, and experimental results. We finally finish the
paper with a conclusion in Section 6.

2 Related work

The existing studies related to our work are categorized as follows.
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2.1 Behavior analysis in Ethereum

Ethereum is an account-based blockchain implementation which supports smart contracts to
be deployed on it. There are generally two kinds of accounts on Ethereum, namely external
owned account (EOA) and smart contract account. An EOA is created by individual user in
the external world, and a smart contract account corresponds to a deployed contract. Various
behaviors of accounts on Ethereum, including fund transfers, contract creation and contract
invocation, are recorded in transactions, which sheds new light on understanding and uncov-
ering illegal activities over the network such as money laundering, bribery, phishing, fraud,
among others.

Hence, analyzing transactions on Ethereum to understand behaviors of accounts emerges
in computer science research communities. One of the prevailing technical route is utilizing
machine learning methods for behavior analysis on Ethereum. To name some, [8] conducts
an XGBoost classifier on the transaction histories of accounts to detect the illicit ones. [28]
presents a behavior-aware profiling of individual smart contract on Ethereum. [6, 7] build
classification models to detect latent Ponzi schemes implemented as smart contracts.

Another major technical route is to leverage graph analysis techniques. For example,
[5] leverages cross-graph analysis to characterize three major activities on Ethereum to
detect security issues. [25] proposes a node clustering approach for user identity discrimi-
nation and malicious user detection. [18] designs several flexible temporal walk strategies
for random-walk based graph representation of the transaction network and benefits for the
downstream link prediction task.

However, they seldom incorporate both temporal information and high-order behavioral
interactions into their approaches. In this work, the proposed THCD discovers frequent tem-
poral motifs to capture the temporal interactions among multiple accounts, and the devised
temporal-motif aware community detection algorithm underpins high-order proximity
preserved behavior analysis. It is orthogonal to previous work.

2.2 Behavior analysis in cryptocurrency

Apart from Ethereum, we also observe related researches for behavior analysis in other
blockchain based cryptocurrencies. For instance, pump-and-dump schemes [17] are fraud-
ulent price manipulations through the spread of misinformation. A case study in [29]
investigates 412 pump-and-dump activities organized in Telegram channels and discovers
patterns in crypto-markets associated with pump-and-dump schemes. Anomaly detection
techniques are utilized in [13] to locate points of anomalous trading activity in cryptocur-
rencies. [23] utilizes the One Class Support Vector Machines algorithm to detect outliers
in cryptocurrency transactions, and the k-means algorithm is applied to group the similar
outliers with the same type of anomalies. The k-means algorithm is also used in [14] for
monitoring and clustering malicious activities in the node behaviors by separating groups
with similar traits from blockchain networks. Graph Convolutional Networks are exploited
in [27] for anti-money laundering in Bitcoin.

Most of the above approaches rely on labeled accounts to train the model, however,
it might be inefficient and biased in anonymous blockchain settings due to the expensive
acquisition cost and the incomplete labeled accounts. While in this work, our THCD adopts
temporal motifs mining techniques on the graph constructed by massive transactions, which
incorporates the temporal high-order proximity of accounts in an unsupervised manner,
which is distinct to existing studies.
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2.3 Graphmining and analysis

Our work is also related to graph mining and analysis. There are fruitful efforts about this
topic, and we summarize graph pattern mining [1, 10] and community detection [3, 16]
here, considering they are closer to our work.

Graph pattern, also known as motif or graphlet, refers to interconnections occurring in
graphs at numbers that are significantly higher than those in random graphs [19]. The task
of graph pattern mining [1, 10] is to find these frequent sub-graphs and their occurrence
counts. These sub-graphs help to understand the higher-order organizations [2] in graph
since we can define higher-order proximity based on them. The high-order proximity in this
paper is different from them because we simultaneously consider the temporal information,
which constrains temporal orders of the edges in the sub-graphs.

Community detection aims to partition the whole graph into some sub-parts [3, 9, 11, 12,
16, 20, 26]. Modularity is most commonly used measure of the quality of the partition. Lou-
vain [3] is a representative greedy algorithm to optimize modularity. There are also other
optimization strategies like simulated annealing [9], spectral optimization [20], and so on.
Recently, motif-aware community detection methods [16, 26] have been developed to pre-
serve the high-order structure of the graph. However, none of them takes the temporal motif
into consideration. Recently, researchers also extend the community detection methods to
dynamic graphs [11, 12] in which the graphs might evolve as time changes.

In this work, we combine temporal motif mining and a specialized temporal high-order
proximity preserved community detection approach to understand the behaviors of accounts
on Ethereum, which is a brand new application of graph analysis techniques on blockchain
transaction monitoring.

3 Concepts and overview

In this section, we first introduce the concepts which will be used in our paper. Then we
give an overview of the proposed framework of THCD.

3.1 Definitions and concepts

Definition 1 (Transaction) A transaction on Ethereum is generally denoted by a 3-tuple
τ = (u, v, t) ∈ T , where u and v are the sender and recipient address (also known as
account), respectively, t is the timestamp that this transaction has been included in a newly
mined block. T refers to the transaction set that stores all transactions on Ethereum.

Besides the information mentioned in Definition 1, a transaction on Ethereum may con-
tain other fields like data, transfer amount, input, gas price and gas limit. The data field is
mainly for contract related activities and always left empty in fund transfer. On the contrary,
the transfer amount field can be greater than zero only in a fund transfer transaction. The
gas price and limit fields are related to the cost processing the transaction, which is out of
the scope of this paper. Therefore, we omit these fields in Definition 1 for convenience.

Definition 2 (Transaction Graph) An Ethereum transaction graph G = (V, E) is a temporal
graph which is built upon the transaction set, i.e. T , where V is the account set and E
is the collection of temporal edges. Each temporal edge ei ∈ E is represented by 3-tuple
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(ui, vi, ti ), i = 1, . . . , |E |, such that (ui, vi, ti ) is a transaction, i.e., (ui, vi, ti ) ∈ T , ui, vi ∈
V and ti ∈ R is a timestamp.

A toy example of transaction graph is shown in Figure 1. The node is represented by
a − f and the numbers attached to the edge denote the timestamps. For instance, 3, 7, 8
indicates transaction a → b occurs at t = 3, 7, 8, respectively. Therefore, there are totally
three temporal edges between node a and b. For the sake of simplicity, we only draw single
arrow to indicate temporal edges with the same start and end nodes and differentiate them
with the attached timestamps.

Definition 3 (Temporal Motif) A temporal motif is a totally ordered sequence of tempo-
ral edges, denoted as M = 〈(u1, v1, 1

)
,
(
u2, v2, 2

)
. . . ,

(
u�, v�, �

)〉 such that ui, vi ∈ V .
The nodes in a temporal motif M could be same though they are denoted by different sym-
bols. The numbers with the underline 1 ∼ � indicate the time order. A temporal motif that
contains k distinct nodes, � temporal edge is called a k-node, �-edge temporal motif.

For example, Figure 2a demonstrates an example of a 3-node, 3-edge temporal motif,
which could be represented by M = 〈(u, v, 1), (w, v, 2), (w, v, 3)〉. It means after u trans-
ferred fund to v, w transferred to v consecutively for two times. The numbers with underline
1, 2, 3 indicate the relative time order and all the transactions.

Definition 4 (Temporal Motif Occurrence) An occurrence of a k-node, �-edge temporal
motif could be a subgraph of the transaction graph G = (V, E). Such an occur-
rence is denoted by H = (Vh, Eh), where Vh ⊂ V , Eh ⊂ E , |Vh| = k and
|Eh| = � . Sorting all the temporal edges in Eh, we have an ordered sequence like
〈(u1, v1, t1) , (u2, v2, t2) . . . , (u�, v�, t�)〉 such that t1 < t2 . . . < t�, t� − t1 ≤ δ, where
ui ∈ Vh, vi ∈ Vh, i = 1, . . . , �, and δ is a user-specified threshold called maximum time
interval.

a

c

b

d

e

f
3,7,8

5,11,17

29

31,34,37

39,41

13,18

25,27

6,32

Figure 1 A toy example of transaction graph. Each lowercase letter represents a node and each number
denotes a timestamp of the corresponding temporal edge
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1
2

3

a c

b

3
5

11

a c

b

3 5,11

c e

b

17 25,27

a b c d

Figure 2 An example temporal motif and its occurrences. The numbers with underline in (a) indicate the
time order while in (b)-(d) are the timestamps

For example, Figure 2b and d demonstrates two occurrences of the example 3-node, 3-
edge temporal motif shown in Figure 2a from the transaction graph in Figure 1 if we set δ =
10, i.e., 〈(a, b, 3) , (c, b, 5) , (c, b, 11)〉 and 〈(c, b, 17) , (e, b, 25) , (e, b, 27)〉, respectively.

Definition 5 (Frequent Temporal Motif) The support of a temporal motif M in a transaction
graph G is defined as the number of occurrences of M in G, denoted by supG(M). If the
support of a temporal motif exceeds the a user-specified threshold min sup, i.e. supG(M) ≥
min sup, we call such temporal motif as a frequent temporal motif.

Frequent temporal motifs in the transaction graph are also called transaction patterns in
this paper, and we will use these two terms interchangeably hereafter. It is not trivial to
define a proper threshold for frequent temporal motifs on the transaction graph of Ethereum
since we have few prior knowledge on it. As a result, in this paper, we rank the support of all
the k-node, �-edge temporal motifs in the transaction graph given a maximum time interval
threshold δ and select the top-K transaction patterns to be frequent. We will show in the
experiment that these top-K transaction patterns are effective in understanding the behavior
of accounts on Ethereum.

Definition 6 (Temporal High-order Proximity) For a given temporal motif M , the set
of all its occurrences on a transaction graph G is denoted as occSetG(M). VM is the
account set contained in occSetG(M). For any u ∈ VM and v ∈ VM , their tem-
poral high-order proximity, denoted by σ(u, v), is defined to be the number of co-
occurrences (u and v appear in the same temporal motif occurrence) in occSetG(M).
We denote WM as the temporal high-order proximity matrix among accounts under-
pinned by M , which is a symmetric square matrix having |VM | rows and columns and
WM [u, v] = WM [v, u] = σ(u, v).

For example, given the transaction graph G shown in Figure 1 and consider the
temporal motif M shown in Figure 2a as a transaction pattern, then σ(b, e) = 1
since these two accounts are occurred in one temporal motif occurrence, namely
〈(c, b, 17) , (e, b, 25) , (e, b, 27)〉.

Definition 7 (WM -based Account Community) Given a temporal high-order proximity
matrix among accounts WM , a WM -based account community is defined as a partition
C = {C1, . . . , CC} of VM , where VM ⊂ V (c.f. Definition 6) and Ci ⊂ VM , i = 1, . . . , C,
such that each account in VM is included in a specific Ci for 1 ≤ i ≤ C.
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With all the concepts introduced, we describe the research problem of this paper. Given
a transaction graph G = (V, E) on Ethereum and user specified parameters k, � and δ,
our problem is to discover transaction patterns M on G, and detect WM -based account
communities to understand the behaviors of Ethereum accounts.

3.2 Framework

In this subsection, we present the whole framework of THCD. The processing pipeline is
exhibited as Figure 3.

Firstly, we run an Ethereum client to synchronize all the transaction blocks (c.f.
Figure 3a) from the Ethereum network. Next, a transaction graph (c.f. Figure 3b) is con-
structed based on these transaction blocks. Then we adopt an efficient algorithm to calculate
the support of all the k-node, �-edge, δ-time temporal motifs to figure out which motifs
are frequent in the transaction graph, and these frequent temporal motifs are also known as
transaction patterns (c.f. Figure 3c). Next, we devise an algorithm to calculate the high-order
proximity among accounts following its definition, and the temporal high-order proximity
matrix of accounts is derived (c.f. Figure 3d). Finally, we propose a novel community detec-
tion method on such temporal high-order proximity matrix and find account communities
underpinned by temporal high-order relationships among accounts for further analysis (c.f.
Figure 3e). In the following, we will center on the three technical parts, namely trans-
action pattern mining algorithm, temporal high-order proximity calculation method and
the temporal high-order community detection approach, respectively, to detail our THCD
approach.

a

b c

e d

1

5
3

1

1

2

5

5
3

1

2

5

Figure 3 The pipeline of the proposed THCD
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4 The THCD approach

This section details the backbone technical components of the proposed THCD approach,
namely transaction pattern mining, temporal high-order proximity calculation, and temporal
high-order aware community detection.

4.1 Transaction patternmining

The goal of transaction pattern mining is to figure out which kinds of temporal motifs are
frequent in the transaction graph. Here temporal motifs consisting of three nodes and three
edges are specially considered since the high-order proximity usually captures the intercon-
nections among more than two nodes and multiple edges, and the 3-node, 3-edge, δ-time
temporal motifs are the most essential and simple instances. For the mining algorithm, we
directly employ a fast counting algorithm proposed by Paranjape et al. [22] to accomplish
this task. In [22], the proposed algorithm leverages dynamic programming approaches and
heuristics to optimize the efficiency in counting the support of given 3-node, 3-edge, δ-
time temporal motif instances. We omit more details of this algorithm as it is not the most
important technical contribution of this paper, and the details of the mining algorithm can
be referred in [22].

4.2 Temporal high-order proximity calculation

In this subsection, we explain how to compute the temporal high-order proximity and build
the temporal high-order proximity matrix in Definition 6. Recall that transaction patterns
that consists of three nodes and three edges can be discovered by the algorithm in [22]. Then
for a given transaction pattern, the proximity between two accounts is defined to be their
co-occurrence counts in this transaction pattern. Therefore, we devise an algorithm to count
the co-occurrence number of any node pair in the transaction graph, which is summarized
in Algorithm 1.

Given a transaction graph and the 3-node, 3-edge, δ-time temporal motifs, the algorithm
is iterated over all the nodes of the transaction graph. For each node, we firstly gather all the
neighbors (Line 3) and enumerate all the neighbor pairs (Line 4). Taking node b in Figure 1
as an example, the neighbor set of node b is Nb = {a, c, e, f } and the node pairs could be
enumerated as {(a, c), (a, e), (a, f ), (c, e), (c, f ), (e, f )}.

For each pair of neighbors, we gather all the temporal edges between the center node
and the neighbor node. Then these edges are sorted according to their timestamps (Line
6). For example, node a and node c are a neighbor pair of node b. The ordered temporal
edge sequence is Sb = 〈e1 = (a, b, 3), e2 = (c, b, 5), e3 = (a, b, 7), e4 = (a, b, 8), e5 =
(c, b, 11), e6 = (c, b, 17)〉.

While the algorithm is able to count the occurrences of multiple motifs simultaneously,
we only exhibit the edges related to the example motif M = 〈(β, α, 1), (γ, α, 2), (γ, α, 3)〉,
and the execution steps are presented in Table 1. We set δ = 10 in this example.

The execution steps in Table 1 are demonstrated as follows. Since the length of sequence
Sb is 6, the variable end loops from 1 to 6 (Line 14). For tstart = 3 and tend = 5, 7, 8, 11,
the while condition (Line 15) is not satisfied. Therefore the counts for these edges and
its prefixes would be increased as Line 24 shows in the first 5 columns. In the 6-th col-
umn, start = 1, end = 6, t1 = 3, t6 = 17, t1 + 10 < t6 so DecrementCounts is
performed on estart = e1 = (a, b). As a result, counts[(a, b)] = counts[(a, b)] −1 = 2,
counts[(a, b)(c, b)] = counts[(a, b)(c, b)] - counts[(a, b)] = 4 − 2 = 2. The 7-th column
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conducts DecrementCounts on e2 = (c, b) and the 8-th column performs IncrementCounts
on e6 = (c, b).

As a result, there are in total 4 occurrences with center node b and neighbor pair (a, c).
Thus the high-order proximity between a and b, a and c are both 4, as shown in Matrix (1).
Note that the proximity between b and c is 5 instead of 4, because there is another occurrence
of M , say 〈(c, b, 17), (e, b, 25), (e, b, 27)〉.

If we take the transaction count as the compared low-order proximity, as shown in
Matrix (1), the temporal high-order proximity matrix (left) differs from low-order prox-
imity matrix (right) in two aspects. On one hand, some pairs of the nodes have non-zero
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Table 1 An example execution of Algorithm 1

Start 1 1 1 1 1 1 2 3

End 1 2 3 4 5 6 6 6

tstart 3 3 3 3 3 3 5 7

tend 3 5 7 8 11 17 17 17

Counts[(a, b)] 1 1 2 3 3 2 2 2

Counts[(c, b)] 0 1 1 1 2 2 1 2

Counts[(a, b)(c, b)] 0 1 1 1 4 2 2 4

Counts[(c, b)(a, b)] 0 0 1 2 2 2 0 0

Counts[(a, b)(c, b)(c, b)] 0 0 0 0 1 1 1 3

Counts[(c, b)(a, b)(a, b)] 0 0 0 1 1 1 1 1

high-order proximity but zero low-order proximity, such as a and c, d and f . This is because
these pairs of nodes may co-occur in the same frequent transaction pattern but have no
direct transaction between each other. On the other hand, the nodes under the high-order
proximity tend to cluster into communities like {{a, b, c}, {d, e, f }} while they are scattered
under the low-order proximity. Therefore, we detect communities on Ethereum based on the
high-order proximity.

a b c d e f

a

b

c

d

e

f

⎛

⎜⎜
⎜⎜⎜
⎜
⎝

0 4 4 0 0 0
4 0 5 0 1 0
4 5 0 0 1 0
0 0 0 0 3 3
0 1 1 3 0 3
0 0 0 3 3 0

⎞

⎟⎟
⎟⎟⎟
⎟
⎠

a b c d e f

a

b

c

d

e

f

⎛

⎜⎜
⎜⎜⎜
⎜
⎝

0 3 0 0 0 0
3 0 3 0 4 1
0 3 0 2 0 0
0 0 2 0 2 0
0 4 0 2 0 3
0 0 0 0 3 0

⎞

⎟⎟
⎟⎟⎟
⎟
⎠

(1)

The time complexity of Algorithm 1 is analysed as follows. The algorithm generally enu-
merates every node in the transaction graph for high-order proximity calculation. Hence,
the outermost loop (Line 2) of Algorithm 1 takes O(|V |) time. For every node v, we need
to iterate every node pair consisting of v and its direct neighbor thus the inner loop (Line 4)
of Algorithm 1 takes O(N2

nbr), where Nnbr is the largest number of neighbors for the nodes
in V . The sorted sequence could be obtained in O(1) time if we assume that the temporal
edges between two nodes are logged in their order of occurrence. The complexity of Func-
tion MotifCounts (Line 11) depends on the updating number of counts. The number of keys
in counts is proportional to 2�. Each temporal edge in the ordered sequence is processed
twice as it enters and leaves the time window. Hence the update complexity is O(2�|S|)
where |S| is the largest length of the ordered sequence. Therefore, the overall complexity of
Algorithm 1 is O(|V ||S|N2

nbr2
�).

4.3 Temporal high-order aware community detection

In this subsection, we detail the third technical component, i.e. the temporal high-order
aware community detection method, which incorporates the frequent temporal motif into the
original transaction graph for better encoding high-order community structure and avoiding
the hypergraph fragmentation issue [16].



World Wide Web

The temporal motif based hypergraph GM = (VM, EM) could be constructed from the
high-order proximity matrix WM . Note that we only consider those nodes which have non-
zero high-order proximity with at least one other node thus VM ⊂ V . EM denotes the edges
corresponding to the non-zero elements in WM . Accordingly, a set of c connected compo-
nents of the hypergraph GM could be identified � = {φi}ci=1. Suppose that the components
are sorted in a descending order according to their node size. We collect the edges in top-Kc

components to be the enhanced edge set E�.
Finally, the transaction graph could be enhanced as GH = (VM, EVM

∪ E�) where EVM

⊂ E is the edges among the nodes in VM . The partition C of VM could be obtained by
optimizing the modularity Q of GH and its general form is (2), where m = m(GH ) is the
number of edges in GH , min = min(C,GH ) is the number of intra-community edges in the
partition C of GH , m′

in = m′
in(C) is the number of intra-community edges in the random

graphs constructed from C.

Q(C,GH , γ ) = min

m
− γ

E(m′
in)

m
(2)

The basic idea is to consider the fraction of intra-community edges among all the edges,
which corresponds to the first term of (2). But this can be easily optimized by a trivial par-
tition which is exactly the graph itself. We penalize this trivial solution by a random graph
model whose degree sequence is akin to that of graph GH . For this model, the probability
that node i and j are connected equals

didj

2m
, where di is the degree of node i. Then we have

E(m′
in) = 1

4m

∑
C∈C D(C)2, where D(C) = ∑

i∈C di and the standard form is shown in
(3).

Q(C,GH , γ ) = min

m
− γ

4m2

∑

C∈C
D(C)2 (3)

At the beginning, each node forms its own community so that the number of communities
equals the number of nodes. The first phase is iterated over all nodes: for each node, we
evaluate the modularity gain by moving node i to the community of its neighbor, and then
the node i is placed in the community with the largest modularity gain, as long as it is
positive. If there is no possible positive gain, node i remains in the original community. The
second phase is to merge the nodes in the same community to construct a supernode. The
weights of links between supernode are given by the sum of the weight of the links between
nodes in the original communities. Then the first phase is repeated with the supernodes, and
the iteration process is keeping elapsed until the partition C stay unchanged or the maximum
iteration threshold is accessed.

5 Experiment

In this section, we investigate the performance of THCD and conduct experiments to answer
the following research questions:

– RQ1. What are the characteristics of the transaction patterns in the Ethereum transac-
tion graph?

– RQ2. How does our method benefit the behavior analysis on Ethereum?
– RQ3. What are the suspicious activities like in the detected communities by our

method?

Implementation details. All the experiments are conducted on a Ubuntu 16.04 server,
with 40 cores Intel(R) Xeon(R) CPU E5-2640 v4 @2.40GHz and 128 GB memory. The
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high-order proximity computation algorithm is implemented in C++ under the frame-
work of SNAP [15] and the other components of THCD are implemented with Python
3.7.3.

5.1 Dataset

To interact with the Ethereum network, we build a Go Ethereum client (Geth) to synchronize
the blocks on Ethereum. We choose 2 million blocks from Jan 30, 2018 to Jan 3, 2019 to
construct the dataset for this paper. Those transaction blocks are split into 4 datasets, each
containing 0.5 million blocks. The detailed statistics are given in Table 2.

To construct the transaction graph from the Ethereum blocks, we treat each account
address as a node and each transaction as a directed temporal edge. However, most of the
accounts have few transactions during the period of the blocks, and we thus remove those
accounts that have less than 20 transaction records in these blocks. This is reasonable in our
approach since these accounts are impossible to take part in any frequent transaction pattern
due to their few occurrences. As a result, around 3% ∼ 4% of the accounts in the blocks are
included in the transaction graphs and the detailed statistics are summarized in Table 2.

5.2 Transaction patternmining

After the transaction graph construction, transaction patterns are mined by calculating their
support in the transaction graphs. In this paper, we choose to mine 3-node, 3-edge, 60
seconds-time temporal motifs from the transaction graph for the following reasons. Firstly,
the 2-node motifs are improper to our problem since they cannot represent interactive rela-
tions among multiple addresses. Though 4-node or even larger motifs may contain more
useful information, the complexity for mining them in large graphs will be very high, which
may render our mining algorithm inefficient to discover the frequent transaction patterns.
Hence, 3-node motifs are selected. Secondly, the 2-edge motifs only record one transaction
between two address, which fails to encode high-order interactions among address. Hence,
they are filtered out. More edges would significantly increase the computational burden in
mining the frequent transaction patterns, and thus are discarded as well. Finally, the tempo-
ral threshold, namely 60 seconds for the temporal interval, was chosen by hyper-parameter
tuning. It is related to the size of transaction graph in Table 2 and the suspicious behaviors of
the accounts. If it is set to be larger, it is less likely that the related accounts are suspicious.
If it is smaller, the nodes in the transaction graph would be fewer.

As mentioned in Section 4.1, the counting algorithm in [22] is employed to count the
occurrences of all the 3-node, 3-edge, 60 seconds-time temporal motifs (as a total of 32
kinds of motifs) to decide which of them are frequent. To demonstrate the characteristic of
the transaction patterns in the Ethereum transaction graph, we exhibit the supports of top-
16 motifs in Figure 4. The motifs are arranged according to the descending order of their

Table 2 Statistics of datasets

Name Start block End block #Account #Trans #Node #Edge

GA 5,000,000 5,500,000 9,677,940 34,329,363 320,299 12,865,400

GB 5,500,000 6,000,000 8,966,203 32,388,404 319,572 13,612,208

GC 6,000,000 6,500,000 6,653,841 25,579,269 248,103 11,438,459

GD 6,500,000 7,000,000 5,780,602 22,691,388 233,864 10,585,189
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Figure 4 The support of top-16 motifs in four transaction graphs. The horizontal axis denotes the name of
the motifs and the vertical axis is the support of the motifs. Different colors indicate different datasets

support, and the supports of top-6 temporal motifs exceed 10 million. These temporal motifs
are significantly more frequent than others. The next following three temporal motifs (c.f.
C12, C21, C23 in Figure 4), although their supports are lower than the top-6, they occur
more frequently than the remaining ones for all the four datasets. Hence they are deemed
to be frequent as well. As a result, we altogether adopt a total of 9 temporal motifs as the
transaction patterns for the following evaluations.

These frequent temporal motifs reflect some characteristics of the common trading pat-
terns in the Ethereum network. For the top-3 temporal motifs, their temporal edges end with
the same node, and they differ in the time order of the three temporal edges. Since they
reflect that two accounts transfer fund to the same account, they are named MERGE transac-
tion patterns, as shown in Figure 5a. The notations for SPLIT transaction patterns (S1 ∼ S3)

are akin to the MERGE patterns except the directions of transactions. For the SPLIT pat-
terns, their temporal edges start from the same node, and they may be related to fund split
transactions. The third class in the frequent temporal motif is named CHAIN. For the com-
pleteness, we list all the six variants of the CHAIN patterns in Figure 5b, but only three of
them are mined to be frequent in our experiments. From the counting results in Figure 4, the
supports of temporal motif C12, C21, C23 are apparently higher than the other three, so we
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Figure 5 The discovered transaction patterns. The all patterns in (a) and C12, C21, C23 in (b) are frequent
in our datasets. The numbers with underline indicate the time order
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deem these three temporal motifs as transaction patterns. We thus derive nine transaction
patterns in our datasets.

5.3 DetectWM -based account community

Next, we leverage these transaction patterns to discover the account communities based on
the temporal high-order proximities among accounts and understand the behaviors of the
accounts on Ethereum. Since there are few methods for Ethereum behavior analysis that can
be directly compared with the proposed THCD, we focus on comparing our method with
state-of-the-art community detection methods.

Baseline Methods. We compare THCD with classic community detection method Lou-
vain [3] and two state-of-the-art high-order community detection methods Motif [2] and
EdMot [16]. For each frequent temporal motif, Louvain performs partition on the origi-
nal transaction graph and Motif takes the high-order proximity as input. EdMot exploits
both the original transaction graph and its edge enhancement strategy.

Evaluation Metric. We adopt Modularity to evaluate the quality of the discovered com-
munity structure. A higher value of modularity indicates better community partition. Kc

is set to be 50 for EdMot and THCD.
Results. Tables 3, 4 and 5 demonstrate the Modularity of the compared methods over each

transaction patterns on the four datasets. From these tables, we observe that our THCD
can achieve the best performance on most of the test cases. The mean of Modularity of
THCD in each class of transaction pattern (c.f. the rightmost column in every table) out-
performs the baselines in 10 cases out of the total 12 comparisons. For baselines, Louvain
detects communities only based on low-order proximity and do not explore the temporal
information thus performs worse than high-order methods like Edmot and THCD. We
also observe that the high-order method Motif performs poorly in our datasets, and we

Table 3 Modularity of community detected in transaction graphs for MERGE motif

Graph Method M1 M2 M3 Avg

GA Louvain 0.8020 0.8094 0.6578 0.7564

Motif 0.7084 0.7157 0.7261 0.7167

EdMot 0.8127 0.8141 0.8132 0.8133

THCD 0.8130 0.8138 0.8136 0.8135

GB Louvain 0.8193 0.8200 0.8205 0.8199

Motif 0.6414 0.6366 0.6624 0.6468

EdMot 0.8244 0.8189 0.8221 0.8218

THCD 0.8244 0.8214 0.8233 0.8230

GC Louvain 0.8413 0.8447 0.8452 0.8437

Motif 0.7836 0.7482 0.7517 0.7612

EdMot 0.8419 0.8462 0.8459 0.8447

THCD 0.8431 0.8472 0.8468 0.8457

GD Louvain 0.8508 0.8558 0.8535 0.8534

Motif 0.7433 0.7675 0.7508 0.7539

EdMot 0.8528 0.8571 0.8552 0.8550

THCD 0.8530 0.8575 0.8547 0.8551
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Table 4 Modularity of community detected in transaction graphs for SPLIT motifs

Graph Method S1 S2 S3 Avg

GA Louvain 0.7813 0.7722 0.7719 0.7751

Motif 0.6660 0.6546 0.6724 0.6643

EdMot 0.8066 0.7979 0.7997 0.8014

THCD 0.8071 0.7997 0.8000 0.8023

GB Louvain 0.7938 0.7762 0.7901 0.7867

Motif 0.6141 0.6123 0.6038 0.6101

EdMot 0.7947 0.7765 0.7904 0.7872

THCD 0.7942 0.7764 0.7904 0.7870

GC Louvain 0.6561 0.6229 0.6194 0.6328

Motif 0.5136 0.4294 0.4514 0.4648

EdMot 0.6564 0.6224 0.6193 0.6327

THCD 0.6568 0.6240 0.6200 0.6336

GD Louvain 0.8676 0.8522 0.8610 0.8603

Motif 0.7284 0.6782 0.7096 0.7054

EdMot 0.8681 0.8537 0.8609 0.8609

THCD 0.8684 0.8537 0.8621 0.8614

conjecture the reason could be that it suffers from the hypergraph fragmentation issue.
For EdMot, it achieves competitive performance due to its enhancement in incorporat-
ing edge information into the high-order proximity calculation. To sum up, benefiting
from the frequent temporal motifs, our method buoys a better community partition with
a larger Modularity derived by the temporal high-order proximity.

Table 5 Modularity of community detected in transaction graphs for CHAIN motifs

Graph Method C12 C21 C23 Avg

GA Louvain 0.6131 0.5747 0.5474 0.5784

Motif 0.5292 0.5762 0.5866 0.5640

EdMot 0.7353 0.7270 0.7368 0.7330

THCD 0.7370 0.7314 0.7344 0.7343

GB Louvain 0.6067 0.5911 0.6239 0.6072

Motif 0.4895 0.5938 0.6581 0.5805

EdMot 0.7398 0.7912 0.8159 0.7823

THCD 0.7377 0.7860 0.8163 0.7800

GC Louvain 0.7239 0.6394 0.7129 0.6921

Motif 0.6500 0.7064 0.7398 0.6987

EdMot 0.8473 0.8473 0.8422 0.8456

THCD 0.8471 0.8491 0.8522 0.8495

GD Louvain 0.8237 0.5987 0.6361 0.6862

Motif 0.6678 0.7056 0.7522 0.7085

EdMot 0.8310 0.8314 0.8251 0.8292

THCD 0.8314 0.8326 0.8260 0.8300
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Figure 6 One of the detected community in GD under the transaction pattern S1 and the analytics of the
suspicious account “0” from etherscan.io. The accounts in this community are indexed by numbers

5.4 Case study of Ethereum behavior understanding

Next, we look closer to the detected communities to demonstrate what THCD could find by
some specific interesting accounts.

Figure 6a shows a community of 59 nodes and 1247 temporal edges in the dataset GD ,
which is constructed from Oct 12, 2018 to Jan 3, 2019. The high-order proximity for this
community is defined by S1, which is a SPLIT transaction pattern. We omit the timestamps
in each temporal edge for the sake of brevity and the total occurrences of S1 in this commu-
nity is 96. We find there is a center node denoted by number 0 in such community which
transferred fund to other 58 nodes consistently in a short period of time. And we analyze the
transaction history of the node 0 from Jan 30, 2018 to Jan 2, 2019 in Figure 6b. From the
figure, we can see the number of unique incoming address remains almost the same in this
year while the number of unique outgoing address increases suddenly at the end of October,
2018, which corresponds to the anomaly found by our method. It would be hard for those
statistical methods to detect such anomalous features since they usually extract account fea-
tures from a long period of time. The low-order detection methods could also hardly find
this kind of community since low-order proximity does not consider high-order interactions
among addresses. We emphasize that it is the temporal high-order proximity that helps our
approach to uncover such suspicious accounts group.

Figure 7 demonstrates part of the communities detected in GD , and the high-order prox-
imity is defined based on C23, a CHAIN transaction pattern. We visualize part of the
communities with the known addresses owned by some exchanges labeled in the figure.
The considered CHAIN pattern, i.e. C23, occurs very frequently in these communities. We
conjecture that the CHAIN transaction patterns across different exchanges may be the prac-
tice of arbitrage, where people take advantage of the price difference to earn profits. These
illicit trading transactions are expected to finish within a short time to evade significant price
fluctuation, and thus these kinds of behaviors could be captured under the mined frequent
3-node, 3-edge, 60 seconds-time transaction patterns. Besides, the CHAIN patterns within
the same exchange may correlate to exaggerated trade volumes of the exchange accounts.
Ethers out of the withdrawal addresses of exchange could be transferred back to its deposit
addresses, which makes an illusion that the exchange is popular on Ethereum without loss
of its balance. Our observation coincides with authoritative report4 published by Crypto

4https://medium.com/crypto-integrity/fake-volumes-in-cryptocurrency-markets-february-report-fec9329f1f98

https://medium.com/crypto-integrity/fake-volumes-in-cryptocurrency-markets-february-report-fec9329f1f98
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Figure 7 Visualization of detected communities in GD under the transaction pattern C23. The known
addresses owned by exchanges are annotated on the nodes. The nodes in the same color indicate they belong
to the same community. The labeled node “OKEx 1” belongs to the community in the color of purple

Integrity, and they have identified malicious fake volume practice in top exchanges includ-
ing OKEx, which is exactly confirmed by our method (see the labeled node “OKEx 1” near
the center of Figure 7). It is an encouraging result that our approach might be able to reveal
plausible evidence for validating abnormal accounts.

5.5 Scalability

Finally, we verify the efficiency of our approach. Recall that the most time-consuming part
of THCD is the high-order proximity computation algorithm, i.e., O(|V ||S|N2

nbr2
�) (cf.

Section 4.2). Thus we mainly evaluate the scalability of Algorithm 1 as we expand the num-
ber of blocks or increase the computing threads. We adopt a straightforward parallel strategy
that assigns the nodes to different threads when computing their occurrence in different
temporal motifs.
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Figure 8 Scalability of THCD

The basic number of blocks is 0.2 million in this evaluation. First, we investigate the
performance of THCD by increasing the computing blocks from 0.2 million to 0.8 million
and the total running time is shown in Figure 8a. Since the complexity with respect to the
largest number of neighbors Nnbr is square, it is hard for THCD to achieve a linear sizeup
but the running time is adoptable in practice.

To study the strong scalability of THCD, we keep the number of blocks to be 0.5 million
which is the same scale as the transaction graph in the experiments and vary the computing
thread from 1 to 8. From the results in Figure 8b, we observe that THCD is parallelizable
using multi-thread counting algorithm. The acceleration is reduced when the thread is set
to be 8 because a few nodes have a large degree and the neighbor-based node pair enumer-
ation of the algorithm dominates the main complexity, which has not been paralleled in our
strategy.

Finally, to test the weak scalability, we keep the threads and blocks growing in pace with
each other and the performance is shown as Figure 8c. The running time increases with the
simultaneous increase of both threads and blocks. For better scaleup performance, the par-
allel strategy needs to be further improved, such as partitioning the complex operation of
nodes with large degree into different threads, which will be left as future work. Neverthe-
less, from the current results, we could conclude THCD is scalable to large-scale transaction
graphs.

6 Conclusion

In this paper, we investigated the problem of behavior analysis on Ethereum with advanced
techniques in graph analysis. We proposed THCD, which is an account community detec-
tion approach incorporating both temporal information of Ethereum transactions and
high-order interactions among accounts. It centers on three technical components. First, to
consider temporal interactions among multiple accounts in the platform, frequent temporal
motifs consisting of three nodes and three temporal edges are mined as transaction pat-
terns. Second, the temporal high-order proximity is computed under the guidance of these
discovered patterns. Finally, a temporal high-order aware community detection method is
devised to partition the corresponding accounts into sub-groups. Experiments on two mil-
lion Ethereum blocks demonstrate the effectiveness and efficiency of our method. The
proposed THCD could not only detect potential suspicious account community but also
reveal plausible evidences for confirmed abnormal accounts. Meanwhile, it is scalable to
large-scale transaction graphs.
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