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The great losses caused by financial fraud have attracted continuous
attention from academia, industry, and regulatory agencies. More con-
cerning, the ongoing coronavirus pandemic (COVID-19) unexpectedly
shocks the global financial system and accelerates the use of digital
financial services, which brings new challenges in effective financial
fraud detection. This paper provides a comprehensive overview of intel-
ligent financial fraud detection practices.We analyze the new features of
fraud risk caused by the pandemic and review the development of data
types used in fraud detection practices from quantitative tabular data to
various unstructured data. The evolution of methods in financial fraud
detection is summarized, and the emerging Graph Neural Network
methods in the post-pandemic era are discussed in particular. Finally,
some of the key challenges and potential directions are proposed to pro-
vide inspiring information on intelligent financial fraud detection in the
future.

Key words: financial fraud detection; COVID-19 pandemic; artificial intel-
ligence

INTRODUCTION
Over the past decades, financial fraud has brought shocking losses to the

global economy, threatening the efficiency and stability of capital markets.1,2

Making thingsworse, the coronavirus pandemic (COVID-19) outbreak in early
2020 disrupted the international financial markets in unprecedented ways,
heightening the risk of being vulnerable to financial fraud.3 For example, in
April 2020, fraud rates across all financial products in the United Kingdom
soared 33% froma year earlier.4Meanwhile, FidelityNational Information Ser-
vices, a payment services provider that assists about 3,200 U.S. banks with
fraud monitoring, reported that the lost volume of fraudulent transactions
leaped 35% in America comparedwith the previous period in 2019.5 Financial
fraud in the post-pandemic era is becoming a growing severe problem.

As defined by Black’s Law Dictionary, fraud refers to a knowing misrepre-
sentation of the truth or concealment of a material fact to induce another to
act to his or her detriment.6 The classification of financial fraud has not
reached a consensus because the types of financial fraud are varied and
mounting. Summarizing the previous literature,7,8 this paper constructs a
financial fraud classification framework according to themajor financial insti-
tution involved. The classification framework is depicted in Figure 1. The
frauds related to securities contain securities and commodities fraud, finan-
cial statement fraud, among others.1 Insurance frauds contain health care
fraud, automobile insurance fraud, corporate insurance fraud, and so on.9,10

The frauds closely related to banks are mortgage fraud, loan default, credit
card fraud, money laundering, among others.11 Some frauds that obviously
cannot be linked to the above three institutions, such as e-commerce transac-
tion fraud, mass marketing fraud, and illegal fund-raising, are classified as
ll
others. Another common perspective is to divide fraud activities into
customer level and business level, so we also take them into consideration
in the framework. Financial fraud detection at the customer level is mainly
related to individual financial activities, including health care insurance, auto-
mobile insurance, credit card, loans, e-commerce transaction, and so on,8,12

whereasbusiness-level fraudcrimes, suchasfinancial statementmisconduct
and money laundering, are often committed by syndicates accompanied by
other crimes such as bribery, tax evasion, and even support of terrorism.13–15

The ongoing COVID-19 pandemic brings unexpected sudden shock to the
global financial system and accelerates the use of digital financial services.16

These changes have escalated more insidious fraud schemes, providing a
breeding ground for all types of financial fraud.17 On one hand, the economic
downturns, caused by the global pandemic, bring proliferating economic
pressure and stronger fraud motives to both companies and individuals.
For example, in response to the expected cash flow disruption caused by
the advent of theCOVID-19 crisis, companieswithdraw funds on a large scale
frompre-existing credit lines.18 The rising operation costs stemming from the
economic shutdown threaten the survival of many companies, inducing an
increase in credit fraud.19 Furthermore, the pressure on corporate financial
results intensifies the temptation tomanipulate financial statements in order
to meet stakeholder expectations.20 For policyholders, poor financial condi-
tions spawn more speculative insurance claim fraud.21

On the other hand, the COVID-19 outbreak significantly accelerates digital
transformation and increases digital processes, which sheds new light on
fraud activities. The emerging situations can be summarized into two types.
The first is that the switch of the business from offline to online exacerbates
information asymmetry and leads to increased difficulty in fraud detection.3

Quarantine regulations create opportunities for online banking and remote
transactions, but it is difficult for remote banking to obtain comprehensive in-
formation for customer identity verification, resulting in frequent credit fraud
incidents.22 The rise in suspected and proven insurance frauds caused by the
claim process adjustment also keeps insurers up at night. The remote work
not only expands workload but also hinders access to information.21 For
example, an insurance adjustermay not be able to inspect automobile repairs
in detail, which provides opportunities for policyholders to exaggerate billing.

Another situation engendered by the increasing digitalization is that the
burgeoning of new financial products and servicesmakes the existing detec-
tionmethods difficult to adapt. To elude regulators, fraudulent behaviors and
types escalate over time, which greatly lowers the effectiveness of the extant
approaches. Google reports they are blocking more than 240 million COVID-
themed spam emails and 18 million malicious emails related to COVID-19
each day.23 During the crisis, fraudsters tweak their fraud schemes and
add COVID-19 twists to confuse the victims, which makes fraud detection
a challenging task for both individuals and detection agencies.24 Moreover,
although digital financial services, such as crowdfunding platforms and
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Figure 1. The classification of financial fraud types
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digital payments, are quickly applied, the incomplete regulatory policies are
conducive to hide fraudsters’ identity information or financing history, which
leads to credit fraud.3

Hence, financial fraud in the post-pandemic era is a critical problem with
the characteristics of strongermotives,more insidious forms, andmore intel-
ligent schemes. These changes bring considerable challenges to financial
fraud detection, including faster detection, better interpretability, and stronger
robustness. In addition, the rapid digital transformation is not only an oppor-
tunity to obtain richer data for fraud detection but also bringsmore problems
such as how to mine valuable information from massive but low-value-den-
sity data more effectively.

Considering the above-mentioned changes, this paper provides a compre-
hensive review of the development of financial fraud detection practices and
highlights the new characteristics of fraud caused by the COVID-19. We first
give a brief introduction to the evolution of data types used in financial fraud
detection. Through the review from traditional methods to recently proposed
methods, the purposeof this paperwas to summarize the possible improving
directions in response to more insidious fraudsters and provide insights into
future algorithm design. Finally, the current challenges and potential direc-
tions are outlined to provide some inspiring information on intelligent finan-
cial fraud detection in the post-pandemic era.

The remainder of the paper is organized as follows. Section 2, financial
fraud detection data evolution, presents the evolution of data used in financial
fraud detection. Section 3, survey of methods, discusses the state-of-the-art
fraud detection techniques according to the timeline and highlights the prog-
ress in recent years. Section 4, challenges and future directions, provides in-
sights into problems and challenges that are still unsolved and points out
the directions for future work. Last, the conclusions are summarized in
Section 5.

FINANCIAL FRAUD DETECTION DATA EVOLUTION
With the rapid growth of information technology, the types of data used for

financial fraud detection continue to expand, which can be roughly divided
into three categories, i.e., basic quantitative structured data (a.k.a. tabular
data), diverse semi-structured data, and complex unstructured data. Data
types and examples are shown in Table 1.

From the very beginning, pioneered by pathfinders, such as Beaver and Alt-
man who stated that a set of financial ratios would be investigated for bank-
ruptcy prediction, numerous encouraging explorations on using quantitative
2 The Innovation 2, 100176, November 28, 2021
data to predict fraud have been conducted.35,36 The sources of these struc-
tured data consist of corporations, regulators, research teams, commercial
companies, and so on. Insurance companies and banks established unique
systems to collect and store the basic information of policyholders or ac-
count holders.37 For insurers, the information used for fraud detection,
such as insurance claims,38 the characteristics of incidents,25 and customer
purchase behaviors,39 are obtained from the claim statement or the pol-
icy.40,41 Banks usually predict fraud with the help of transaction information,
such as transactional history and payment observation.42,43 More compre-
hensively, regulators collect incidents in the entire industry and issue relevant
reports.25,44 For example, the Securities and Exchange Commission (SEC)
has been issuing the Accounting and Auditing Enforcement Releases
(AAERs) to investigate companies for alleged accounting misconduct since
1982.45 To enhance the availability of financial misstatements data, Dechow
et al. sorted AAERs information into a numerical database.27 Commercial
companies also collect finance and market information from global institu-
tions and build databases to meet the growing demand for data analysis.
For instance, the major accounting and financial databases for researchers
in the world include the Compustat North America database by Standard &
Poor’s and the Worldscope database by Thomson Financial.46,47 Based on
commercial databases, Beneish calculated financial indexes including the
grossmargin index, asset quality index, and sales growth index when detect-
ing corporation earnings manipulation.26

Quantitative data are intuitive and easy to obtain, but the information con-
tained in it is limited. As shown in Table 1, researchers seek other types of
data to detect fraud with the continuous escalation of fraud patterns. For
example, Law examined the organizational factors of corporate governance
that are related to fraud through analyzing questionnaires and interviews
from chief financial officers in Hong Kong.28 By mining event logs for knowl-
edge, processmining that analyzes business processes also assists in fraud
detection.48 Jans et al. developed a system that mined procurement pro-
cesses to predict exposure opportunities of committing internal transaction
fraud.29 Another typical type of information is the public formatted files from
corporations and regulatory authorities. For example, the SEC has required
corporations to file key performance reports in the extensible Business
Reporting Language (XBRL) format since 2009, which provides high-level
data and improves the transparency of corporations.49 Researchers pull
out financial statements from the data repository and then predict financial
misconduct through text analysis.30,50,51
www.cell.com/the-innovation
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Table 1. Types and examples of data used for fraud detection

Data type Examples Research

Structured Quantitative
numbers

Viaene et al. diagnose automobile
insurance claims fraud by using indicators
including claimant, insured driver, and lost
wages.25

Beneish detects corporation earnings
manipulation by using financial indexes
collected from commercial databases.26

Dechow et al. describe the characteristics of
corporation misrepresentation through sorting
Accounting and Auditing Enforcement
Releases information into a numerical
database.27

Semi-structured Interview Law analyzes the organizational factors of
corporate fraud through interviewing chief
financial officers.28

Business
process

Jans et al. mine procurement processes to
predict internal transaction fraud in
companies.29

Database
system

The Securities and Exchange Commission
requires corporations to submit reports in the
eXtensible Business Reporting Language
(XBRL) language, which provides public and
formatted data for fraud detection.30

Unstructured Text Xiong et al. mine individual opinions on social
media to detect corporate disclosure fraud.31

Audio Hobson et al. analyze the vocal and linguistic
cues elicited from speech to detect
misreporting.32

Video Muddy Waters Research analyzes multiple
information including store traffic videos to
expose Luckin Coffee of fabricating financial
numbers.33

Telemetry
data

The China Securities Regulatory Commission
detects Dalian Zhangzidao Fishery Group’s
financial fraud by using the BeiDou Navigation
Satellite System.34
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Nowadays, the explosion of information has brought more types of avail-
able data, which are mainly unstructured, such as text, video, and telemetry
data. Typical examples are shown in Table 1. In addition to financial reports,
companies’ abundant email archives,52 public corporate announcements,53

legal proceedings published by courts,54 and other textual information have
also gradually become raw materials for fraud detection.55 Furthermore,
financial social media platforms have burgeoned in recent years.45 Bymining
emotions, social relations, and other information,31,56 the wisdom of crowds
within social media is also a crucial toolkit to capture business information.
Besides, multitype unstructured data, such as audio,32,57,58 image,59 and
video,60 are playing important roles. Recently, Muddy Waters Research
analyzed multiple information, including customer receipts and store traffic
videos, and accused Luckin Coffee of fabricating financial and operating
numbers since the third quarter of 2019.33 The China Securities Regulatory
Commission recorded theworking location and duration of the Dalian Zhang-
zidao Fishery Group’s fishing vessels by use of the BeiDou Navigation Satel-
lite System to expose the Chinese A-share listed fishery group that pretended
that their scallops had escaped four times in 6 years to inflate profits.34

Notably, fraud detection, regardless of the fraud type, is faced with
continuously growing data and informationthat need to be effectively mined
and integrated. Reviewing the history of data types mentioned above, the
data used in fraud detection practices have experienced the development
from basic quantitative data to the current multi-source data. The combina-
tion of multi-source information can provide a more panoramic view of
financial activities and brings opportunities for better fraud detection. It is
also the general trend of scientific research in various fields.61 However,
this evolution also brings great challenges in developing intelligent methods
ll
to effectively integrate and utilize panoramic data in future detection
practices.

SURVEY OF METHODS
Analogous to the evolution of data types, methods for fraud detection

experienced a rapid proliferation in the past decades. Especially in the
post-pandemic era, due to the intensifiedmotives, insidious forms, and intel-
ligent schemes of financial fraud, it is becoming more difficult to identify
fraudulent behaviors accurately and efficiently. Thus, recently, researchers
tend to incorporate and exploit information from as many aspects as
possible for comprehensive monitoring.62 Following these trends, in this
section, we survey existing financial fraud detection methods based on
the technical development routes. We highlight the research proposed in
the recent 2 years to demonstrate how researchers excavate related infor-
mation frommultiple perspectives in the post-pandemic era. For those anti-
quated techniques, we merely list representative cases to clarify the histor-
ical line. Table 2 depicts the representative financial fraud detection
approaches we discuss in this section.

Rule-based expert systems
In the early stages, data used for fraud detection are usually highly struc-

tured, e.g., transaction logs or well-designed financial metrics, and the
means for detecting fraud are undecorated. A number of rules and static
thresholds can be used to filter out misbehavior. A straightforward case is
that a system will alert if important indexes like liquidity or profitability are
unusually high or low.26 Then, expert systems were designed to facilitate
the work of human auditors. They generally use symbolic rules to encode
knowledge created by human experts, which was an important part of arti-
ficial intelligence during the 1970s and 1980s. This encoded knowledge
base is then queried to yield a result through reasoning.105 For example,
Quinlan et al. and Cohen et al. introduced a set of if-then statements to
recognize fraud records inmultiple fields.98,99 Moreover, association rules,63

fuzzy rules,64 and manual trial-and-error rules65 are applied to settle the
problems of credit card fraud detection as well.

Nevertheless, these manual and rule-based approaches have become
particularly costly and ineffective at present.106 As fraudsters begin to
employ trickier strategies to elude regulators, rich financial-related informa-
tion is required to be analyzed, which undoubtedly exacerbates difficulties in
extracting and summarizing effective rules. Small sets of human-summa-
rized rules are no longer sufficient to meet the demand, motivating to build
and maintain a large set of rules.107 However, managing a large ruleset re-
quires more computing resources and is challenging to evaluate and
understand.105

Traditional machine learning algorithms
Considering the defects of rule-based approaches, growing numbers of

machine learning-based methods have been developed. They usually start
withextractingstatistical features relevant to thegiven task, suchasuserpro-
files, credit history, and historical transactions.94 After performing feature en-
gineering, a classifiercanbe trainedwith these features.71Next,we introduce
several typical algorithms and their corresponding applications in financial
fraud detection.

NaiveBayes, LogisticRegression (LR), andSupportVectorMachine (SVM)
are standard linear classifiers that have shown excellent performance in
various applications.25,108–110 Naive Bayes is a simple probabilistic classifier
based on the “Bayes” theorem under the assumption of strong (naive) inde-
pendence of the attributes. Panigrahi et al. proposed a well-designed model
for credit card fraud detection, combining a Dempster-Shafer adder with a
Bayesian learner.69 Deng designed a fraudulent financial statements detec-
tion model based on a Naive Bayes classifier to facilitate human auditors.82

LR classifies the existing data by establishing regression equations classifi-
cation boundaries, mainly used for binary classification problems.111,112 Ar-
t’ısetal. appliedLRmodel todetect fraudulent insuranceclaimsbasedon the
Spanish market and estimated the error rate.87 Viaene et al. considered the
damages and audit costs and applied LR model to decide suspicious
The Innovation 2, 100176, November 28, 2021 3



Table 2. Financial fraud detection practices discussed in the section “survey of methods”

Fraud type Data type Algorithm XAI Research

Credit fraud Customer level Structured Expert system C Brause et al.,63 HaratiNik et al.,64

Correia et al.65

SVM C Dheepa et al.66

RF C Noghani et al.67

CNN * Fu et al.68

Semi-structured Naive bayes C Panigrahi et al.69

CNN * Zheng et al.70

Unstructured FNN, Att. 〇 HACUD71

LSTM, Att. 〇 MAHINDER72

GNN * PC-GNN73

GNN, Att. 〇 AMG-DP,74 SemiGNN75

GNN, LSTM, Att. * TemGNN76

Money laundering Business level Unstructured Graph AD C FlowScope77

Supervised network
analysis

C Savage et al.78

GNN * Weber et al.79

Loan fraud Customer level Unstructured GNN, GRU, Att. * DGANN80

GNN, LSTM, Att. * ST-GNN81

Financial statement fraud Business level Structured Naive bayes C Deng82

SVM C Ravisankar et al.83

RF, GBT, Rule
ensembles

C Whiting et al.84

FNN * Green and Choi,85

Fanning and Cogger86

Insurance fraud Customer level Structured LR C Artís et al.,87

Viaene et al.88

GBT C Guelman89

Unstructured GNN * Liang et al.90

E-commerce transaction
fraud

Customer level Semi-structured LSTM * Jurgovsky et al.91

GRU * Branco et al.92

Unstructured RNN * CLUE93

LSTM, Att. 〇 LIC Tree-LSTM94

FNN, Att., FM 〇 HEN95

FNN, Att., FM * NHFM,96 DIFM97

Others Structured Expert system C Quinlan et al.,98 Cohen et al.99

Unstructured Graph AD C Li et al.100

GNN * CARE-GNN101

GNN, Att. * Player2Vec,102 GraphConsis,103

PIdentifier104

AD, anomaly detection; Att., attention; XAI, explainable artificial intelligence;C represents non-deep method and is generally considered to be interpretable;〇
represents the method claims to be interpretable; * indicates that it is hard to evaluate.
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claims.88 SVM is also a linear classifier that separates all data samples into
correct classes by finding the maximum margin hyperplane. Kernel tech-
niques and margin optimization are two critical properties of SVM.43,113

With these two tricks, SVM is capable of solving complex fraud detection
4 The Innovation 2, 100176, November 28, 2021
problems. To name some, Ravisankar et al. tested SVM techniques on
data from 202 Chinese companies to find out a fraudulent financial state-
ment.83 Dheepa and Dhanapal employed behavior-based SVM to predict
suspicious transactions.66
www.cell.com/the-innovation
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Tree-based classifiers attempt to separate data into exclusive categories.
Each leaf node represents a specific class, and each tree branch represents a
possible attribute value.114 Decision Tree is the most fundamental one; how-
ever, it is likely to be unstable and easily over-fitting. Therefore, more
advanced tree-based classifiers such asRandomForest (RF),115 XGBoost,116

or LightGBM117 apply ensemble strategies such as bagging and boosting to
improve performance. In the financial detection area, tree-based models
have shown performance superior to other learning algorithms like
SVM.118–120 For example, Guelman researched Gradient Boosting Tree
(GBT) in modeling auto insurance loss cost based on data from a Canadian
company.89Whiting et al. reported the performance ofmethods including RF,
GBT, and rule ensembleswhen applying to financial fraud detection.84 Taking
feature selection and decision cost into account, Noghani and Moattar pro-
posed an advanced RF-based model, which yielded certain performance
improvements.67

Furthermore, some applications represent transaction data as graphs,
using nodes to represent financial entities and edges to represent money
transfer.121 After extracting features through feature engineering and
graph-embedding techniques to preserve topological and structural proper-
ties,122–124 machine learning models are built afterward. For example,
Savage et al. extracted meaningful communities from the network and per-
formed classification to detect money-laundering activities.78 A few works
consider graph anomaly detection skills, as fraud can be seen as unusual
events different from normal behaviors.125–127 For instance, Li et al. spotted
potential fraudulent cases in trading networks by finding the black hole and
volcano patterns.100 Li et al. modeled the laundering as densest and multi-
step money flow and proposed an algorithm FlowScope to search dense
flow accurately and efficiently in large transaction graphs.77

Deep-learning-based approaches
Deep Learning (DL) is becoming a particular type ofmachine learning, as it

achieves great success in various domains. At its heart, the most essential
advantages of DL models are that they can extract features directly from
raw data without hard-coding task-specific knowledge or tedious feature en-
gineering.128With the increasingly complex fraud in the financial scenario, re-
searchers try their best to use these massive and various data to uncover
these concealed miscreants. Thus, DL techniques for fraud detection have
gained popularity over recent years, especially in the post-pandemic era
where digital transformation has become the new normal. In this section,
we discuss the surveyed approaches according to the different types of input
data.

Modeling tabular data. In thefirst few years, researchersmerely used the
basic feedforwardneural networks (FNNs), also known asmulti-layer percep-
trons (MLPs), as classifiers based on static tabular data.129 for example,
Green and Choi presented a neural network classifier employing variables
related to the financial statement.85 Fanning and Cogger also used an artifi-
cial neural network formanagement of fraud prediction.86 Their input vectors
mainly consist of financial ratios and qualitative variables derived from finan-
cial statements. Though many attempts using MLP in financial fraud detec-
tion have shown better performance than rule-based systems and other clas-
sificationmethods like LR,130–133 these networks are acyclic and incapable of
modeling sequential data that might be essential to discover anomaly users
or transactions.129

Modeling sequential data. Hence, for better excavating and utilizing
sequential data, more complex and elaborate network structures are de-
signed. Convolutional Neural Networks (CNNs), with the convolutional oper-
ations, are capable of capturing short-term contextual information and can
be applied in financial fraud detection. For example, Fu et al. recombined
transaction data to feature matrices and performed a CNN-based approach
to identify latent fraud behaviors.68 Zheng et al. formulated a meta-learning-
based classifier, including a feature extraction module, a K-Tuplet Network
based on ResNet-34, which is a typical CNN structure.70

Besides CNN, cyclic DL models, e.g., Recurrent Neural Networks (RNNs),
are further proposed and developed for sequence prediction.134–136 In
RNNs, the output of the last hidden layer is also the input of the current hidden
ll
layer, which renders it suitable to encode variable sequences of inputs. Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are typical ar-
chitectures of RNNs. They introduce “Gates” to optionally let information
through to avoid the problems of gradient vanishing and exploding.137–139

As temporal information is a crucial factor in financial data analysis, the
RNN models significantly outperform basic MLPs due to their abilities to
encode sequential data.140 To name some, Wang et al. presented a novel
deep-learning-based system, namely CLUE, to detect transaction fraud at
JD.com, one of China’s largest e-commerce platforms.93 Jurgovsky et al.
considered the fraud detection problem in e-commerce as a sequence clas-
sification task and employed LSTM networks to incorporate the historical
behavior of the users for detecting fraud on new incoming transactions.91

Branco et al. introduced a GRU-based framework to detect payment card
fraud, in which the payments are treated as an interleaved sequence.92 Liu
et al. devised a behavior tree and introduced a Local Intention Calibrated
Tree-LSTM (LIC Tree-LSTM) for fraud transaction detection.94 The behavior
tree is built by splitting and reorganizing the sequential behavioral data, and
its branch represents a specific user intention.

In addition to CNNs and RNNs, quite a few other techniques can be em-
ployed to model sequential data. For example, Zhu et al. proposed a Hierar-
chical Explainable Network (HEN) to model users’ behavior sequences.95 In
HEN, a field-level extractor encodes both first- and second-order information
through Factorization Machines (FM).141 Then, an event-level extractor cap-
tures higher-order feature interactions for better sequence representation.
Similarly, Xi et al. designed a Neural Hierarchical Factorization Machine
(NHFM) model, a two-level architecture capturing feature interactions and
representations of users’ historical events.96 They further presented the
Dual Importance-aware Factorization Machines, which exploits users’ histor-
ical behavior in dual perspectives.97

Modeling relational data. Though sequential data demonstrate effec-
tiveness in detecting fraud among users and transactions, the changes in
the post-pandemic era propel modeling relational data in urgent demand.
As we mentioned before, the intensified motives, insidious forms, and intelli-
gent schemes impel comprehensive data analysis and considering interac-
tion relations among users. It thus motivates graph-based DL and Graph
Neural Networks (GNNs) widely applied in the financial fraud detection
areas since the graph is a natural choice for presenting relational
data.122,126,127,142,143

Homogeneous relations. Initially, most graph-based methods only
consider homogeneous graphs, in which the node and edge types are undif-
ferentiated. Even so, they have yielded promising performance in financial
crime and fraud detection, especially GNNs, which have the potential to
improve structural representations and causal reasoning.121 They broadly
follow a recursive message passing schema, in which each node computes
its new representation through aggregating feature vectors of its neigh-
bors.144 For instance, Weber et al. applied Graph Convolutional Network
(GCN), a typical GNN model, in anti-money laundering.79 Liang et al. intro-
duced a device-sharing network among claimants and developed a GNN-
based solution to uncover groups of organized fraudsters for return-freight
insurance on the e-commerce platform.90

Furthermore, as most real-world graphs are dynamic, a few models
consider an additional time dimension based on previous studies. By
combining GNN and RNN in different ways, dynamic GNNs are proposed
to mine structural and temporal information simultaneously. For
example, DGANN is a dynamic graph-based attention neural network
for risk guarantee relationship prediction.80 Each node in the graph rep-
resents a company, and each edge represents a guarantee. In the model,
a GCN layer with structural attention can process each snapshot, a
Graph Recurrent Network with temporal attention is applied to exploit
the temporal relationships between snapshots. Similarly, Yang et al. pro-
posed a Spatial Temporal GNN (ST-GNN) to mine credible supply chain
relationships, including risk analysis of small and medium-sized enter-
prises.81 Wang et al. proposed a Temporal-Aware GNN (TemGNN) to
model the credit risk prediction on dynamic graphs.76 Considering the
time interval irregularity between dynamic snapshots, TemGNN adopts
The Innovation 2, 100176, November 28, 2021 5
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an interval-decayed attention mechanism and can assemble short- and
long-term temporal-structural information.

Heterogeneous relations. Although previous homogeneous works offer
practical solutions formodeling relational data, they still have limited ability to
capture information from realistic situations, especially the multi-relational
data that emerged in the post-virus era. As remote businesses and transac-
tions hinder access to comprehensive user information for identity verifica-
tion, this switch from offline to online exacerbates information asymmetry
and makes data completeness and data quality a major concern. Multi-
source data are thus collected to alleviate this problem and better model
user profiles. Researchers start focusing on heterogeneous graphs, as they
contain multiple types of nodes and links to represent different entities and
relations, which mimic the data flows more closely in the real-world
network.74,145–148 For instance, under problem formulation in Zhong et al.,
a node can be a customer, a merchant, or a device.72 In the graph con-
structed in Hu et al., an edge implies social connection, money transaction,
or device ownership, and so forth.74 The heterogeneous graph also can be
termed as a Heterogeneous Information Network. Meanwhile, in the recent
scenario of financial fraud detection, DL solutions for the heterogeneous
graph are often proposed under the Attributed Heterogeneous Information
Network (AHIN), where both nodes and edges may contain attributes (or
named features). Thus, we discuss the heterogeneous graph-basedmethods
under the concept of AHIN.

While AHIN is a powerful information modeling method for character-
izing data heterogeneity,74 it brings about extra challenges in designing al-
gorithms because of its complex topology and higher feature dimensions.
One intuitive solution for AHIN is decomposing the heterogeneous graph as
a combination of series of homogeneous graphs and fusing the homoge-
neous representations. For example, Hu et al. devised AMG-DP that em-
ploys relation-specific receptive layers to distinguish neighbors by relation
attributes.74 After aggregating the neighbor information following a typical
GNN schema, representations incorporating rich semantics derived from
multiplex relations are learned. Then, they implement a relation-specific
attention mechanism to integrate multiple representations adaptively for
loan default prediction. Zhang et al. proposed Player2Vec to identify key
players in online underground forums.102 In the model, GCN is employed
to learn embedding from each single-view attributed graph. Then, an atten-
tion mechanism fuses the learned embedding based on different single-
view attributed graphs to get the final representations. Similarly, Wang
et al. proposed a semi-supervised attentive GNN, named SemiGNN, which
applies a hierarchical attention mechanism to correlate different neighbors
and different views better.75

The aforementioned heterogeneous GNNs reveal illegal acts through
aggregating nodes’ neighborhood information across different relations.
However, under the fraud detection scenario, some inherent characteristics
of the data will hamper the performance of GNN-based fraud detectors, so
a fewmethods are proposed to alleviate these issues. For example, to escape
regulation, fraudsters will camouflage themselves through adjusting their
behavior to act like benign users or connecting themselves to benign users,
which we call the feature and relation camouflage. Dou et al. propose CARE-
GNN, consisting of three neural modules against the camouflage.101 A label-
aware similarity measure and a similarity-aware neighbor selector are
leveraged to find informative neighboring nodes. A relation-aware neighbor
aggregator combines neighborhood information across different relations
with trainable weights. Sharing a similar idea, Liu et al. introduced a GNN
framework, namely GraphConsis, to alleviate the problems of context,
feature, and relation inconsistency.103 Besides, class imbalance also has
negative influence onmodels, whichmeans the label distribution of samples
is heavily skewed. Liu et al. proposed a Pick and Choose GNN (PC-GNN) to
remedy this challenge.73 In PC-GNN, first, nodes and edges are picked with
a devised label-balanced sampler to construct sub-graphs for mini-batch
training. Next, for each node in the sub-graph, the neighbor candidates are
chosen by a proposed neighborhood sampler. Finally, information from the
selected neighbors and different relations is aggregated to obtain the final
representation of a target node.
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Another route for modeling AHIN is encoding nodes’ or links’ attributes via
meta-path sampling. Meta-path is a path sampled over graphs according to
preset rules, refined from prior experience about specific fraud patterns.149

For example, “User /
Transaction

Merchant /
Transaction

User” represents all paths
starting from a user node, passing a merchant node, ending in a user node
via two “Transaction” edges. The interaction relations among users can be
explored according to the guidance of predefined meta-paths. Hu et al. pro-
posed HACUD, which picks meta-path-aware neighborhoods for each node,
then aggregates features with a hierarchical attentionmechanism to classify
whether a user is cash-out or not.71 Zhong et al. proposed MAHINDER for
financial defaulter detection, which implements meta-path sampling and
considers multi-view decomposing.72 Unlike HACUD, MAHINDER models
each meta-path by an LSTM-based encoder to capture local structural pat-
terns and then adopts attention mechanisms on the node, link, and meta-
path levels to learn fusion weights. The works of Hu et al. and Zhong et al.
are typical meta-path-based algorithms in AHIN, although do not follow
GNNs’ typical message passing schema.71,72 Fan et al. further proposed PI-
dentifier to detect illicit trade in the underground market, which upgrades
kernel of meta-path to meta-graph, a graphlet composed of meta-paths.104

For each sampled meta-graph, a representation is learned based on a
meta-graph-guided search. Multi-head attention is computed to construct
embedding for buyer nodes and products nodes separately.

The global coronavirus pandemic makes it harder to detect suspects for
the following reasons: economic fallout brings stronger fraud motive, social
distancing hinders information collection, and accelerated digital transforma-
tion affects existing detection methods. Reviewing and summarizing the
representative cases mentioned above, we see that in response to the prob-
lem, the anti-fraud systemsbegin excavating deeper user-related information,
like sequential and relational data, and gather information frommultiple sour-
ces to better model real-world activities. Consequently, the data are getting
more irregular, from numerical indicators to transaction networks, from
Euclidean to non-Euclidean data. In this case, DL techniques are becoming
increasingly popular, as they can identify and combine crucial features
from unstructured data to achieve high performance without any domain
knowledge. In addition, graph-based, especially heterogeneous graph-based
fraud detection, has been focused on recently, as graphs can capture rich
behavioral interactions.

CHALLENGES AND FUTURE DIRECTIONS
Although data-driven artificial intelligent techniques have achieved excel-

lent performance in the financial fraud detection domain, there are still key
issues remaining unsolved, as financial fraud schemes are rapidly evolving
to adapt to this new digital environment. In this section, we provide themajor
challenges and suggest directions for future work from task-oriented, data-
oriented, and model-oriented perspectives.

Financial fraud is harder to identify due to its increasing
secretiveness and complexity

Oneof the severe difficulties for financial fraud detection is that the fraud is
hidden in complex financial activities. The increased motives and the accel-
erated digital transformation causedby the pandemic even lead tomore intel-
ligent fraud schemes, which makes fraud more difficult to identify. These is-
sues bring two essential challenges for detection.

The secretiveness of financial fraud leads to the natural error in
samples. Fraud detection, in many cases, can be regarded as a classifica-
tion task essentially, which requires fraud samples and non-fraud samples
as training data. However, as the fraud activities are increasingly hidden, in
most portions of practices, fraud usually cannot be fully identified by regula-
tors and market participants. Consequently, the non-fraud samples used for
training may contain some unrecognized fraud samples, leading to natural
errors among training samples. When the natural error rate of samples is
serious, the basic features of fraud and non-fraud samples captured by the
detection model may have fundamental errors, but the users of the model
are not aware of them, thus seriously threatening the accuracy of detection
results.
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The complexity of financial activities leads to massive information
involved. The financial activities are related to a wider range of business.
Therefore, the involved information ismassive but heterogeneous, accompa-
nied by lower-value density. The multi-source information will be difficult to
play its role if it is not well integrated. Some researchers have explored
models for storing and analyzingmassive data, amongwhich the knowledge
graph is most suitable for solving this problem. The knowledge graph is a
knowledge system connecting all data through the relationships between
the data.150,151 This knowledge-based system, if possible, will contain infor-
mation about every entity related to fraud in the real world,152,153 which pro-
vides a panoramic perspective. Furthermore, the logic consistency analysis
between different nodes of the knowledge graph can help verify the authen-
ticity of information and correct inconsistent information.154 Powerful knowl-
edge reasoning technologies based on knowledge graphs can help mine the
secret relationship between entities connected with fraud and provide poten-
tial evidence to make up for missing information.155,156 Thus, the knowledge
graph will be one of the most important and promising tools that mine valu-
able information for comprehensive detection in the future.

Financial data for fraud detection is massive but scattered
In the information explosion era, the multi-source data are massive but

usually scattered across different institutions. At the same time, detecting
fraud activities increasingly requires the support of panoramic data to gain
a comprehensive understanding of miscreant activities. It thus remains chal-
lenging in integrating these scattered data and processing the massive data
efficiently.

Data isolation is difficult to resolve. Although the amount of data used
in fraud detection is much more tremendous than before, most of the data
exist in the form of isolated islands, i.e., scattered in different institutions or
even different countries.157 It will be hard to provide a comprehensive view
of financial activities due to the difficulties in data aggregation, which will
further greatly affect the effectiveness of detection methods. Google pro-
poses the federated learning framework,which helps to construct a complete
and powerful model through joint modeling of multiple institutions.158,159

However, some key issues remain to be studied, such as the data formats
of different institutions are inconsistent, and the network connections be-
tween institutions are unstable.

Large-scale data processing brings great challenges to model
training. The increase of digital services records more user footprints and
information, but it also brings more challenges to massive data processing.
Many detection methods require plenty of time to optimize parameters, and
the time grows nonlinearly with the expansion of the sample size. Time-
consuming modeling cannot obtain the detection model quickly, so it is diffi-
cult to update the detectionmodel in time. For example, DL can be applied to
process large amounts of data, but training parameters are extremely time-
consuming.160,161 Further research is required to fully develop and apply
more advanced technologies to solve these practical fraud detection
problems.

Financial fraud detection models need to be more flexible and
interpretable

Nowadays, though the emerging research and application of GNN and
other models have helped improve financial fraud detection efficiency by uti-
lizing multiple types of information, there are still many challenges with the
practicality of the detection models such as model bias, robustness, and
interpretability.

Model bias issue needs to be taken into account. Model bias is a signif-
icant issue in the machine learning field, which refers to the difference be-
tween the model prediction and the actual value we are trying to predict. In
fraud detection practice, there are roughly two reasons for model bias: one
is the problem of the data samples; the other is from themodels themselves.
Class imbalance is a crucial factor to highmodel bias and is overwhelmingly
observed in fraud detection, as regularly fraudsters are far fewer than regular
users. Models performing poorly on the minority may lead to undesirable re-
sults, as people aremore concernedabout theminority classes, i.e., the fraud-
ll
sters. The class imbalance problem on feature-based neural methods has
been studied in depth, such as re-sampling,162–164 re-weighting,165–168 and
transfer learning.95,169 Whereas in the GNNs works, the noisy information,
few interactions among fraudsters, and desalination of the minority class’s
features caused by the message aggregation of GNNs are three major chal-
lenges in designing class imbalanced GNNs for fraud detection.73,170 Future
studies that follow-up on these directionswould be beneficial. There are other
model biases caused by samples that need to be addressed, such as the un-
der-representation, ignoring sensitive attributes, and the social feedback
loops.171,172 As for the detection models themselves, the initial design flaw
of the model is also one of the essential factors leading to model bias, which
is very hard to avoid. However, there is also recent researchprogressworking
on calibrating such a kind of bias.173

Robustness needs to be strengthened. The fraudster and the anti-fraud
party are always in a dynamic game. With the new technology, the game
among fraudsters, financial institutions, and regulators is upgrading, present-
ing high confrontational features. The robustness and adversarial issues
based on conventional DL models have attracted extensive attention from
researchers174–176; however, the study for GNNs is still in its nascent
stages.177,178 Moreover, due to the message propagation mechanism of
GNNs, the effects caused by small perturbations can spread, resulting in
evenworse performance than non-GNNs. In financial scenarios, attackers al-
ways aim for interference with defense models to seek exorbitant profits.
Hence, how to detect and defend against harmful perturbations and design
robust models, especially for GNN, are becoming major implementa-
tion goals.

Interpretability needs to be improved. A key factor in the success of
deep neural networks is the fact that networks can be seen as a very large
number of nonlinear functions, rendering them possible to learn features at
various levels of abstraction with the cost of interpretability and explainabil-
ity.179–181 As a result, they cannot be fully trusted in critical applications
such as financial fraud detection. Although several post hoc explanatory
methods have been developed recently to understand DL models, research
has shown that many interpretation methods may produce unfaithful re-
sults.182–185 Especially for a graph-based neural network, its unique non-
Euclidean structure brings more challenges, as gradient or backpropaga-
tion-related methods cannot be directly applied. Although researchers have
made explorations on interpreting GNNs, most of them are still working on
toy examples and cannot solve problems in real-world financial sce-
narios.186–188 Hence, further research is required to understand not only con-
ventional GNNs but alsomore complex structures, such asmodels on AHIN.
CONCLUSIONS
In this survey, we provided a comprehensive overview of financial fraud

detection practices from three aspects: the impact of the pandemic, the evo-
lution of the data, and the advancement of methods. The unprecedented
pandemic shocked the global financial system and accelerated digital trans-
formation, which brings stronger motives, more insidious forms, and more
intelligent schemes of financial fraud activities.

As for the data, applying more panoramic data to comprehensively detect
fraud activities is the prevailing trend. The data used in fraud detection prac-
tices have experienced the development from basic quantitative data to the
current multi-source unstructured data. In the post-pandemic era, explosive
data provide more information than before, and fraud detection is inclined
to use multi-source data to obtain a comprehensive understanding of finan-
cial activities.

As for the model, DL systems have been popular recently for their versa-
tility and revolutionary success in financial fraud detection. The graph-based
detection approach is an emerging direction to analyze multi-source data of
fraud activities.With the rapid development of technology, financial scenarios
and behaviors are becomingmore intelligent and sophisticated. Graph-based
detection, such as GNN, attracts more attention since the graph can gather
information from multiple sources to better model real-world activities and
detect hidden anomalies more effectively.
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Although the data-driven DL models have been proven to be helpful in
fraud detection problems, there are still many challenges to be solved for
future development. Complex and hidden fraud activities bring greater chal-
lenges to a comprehensive understanding and accurate identification.
Achieving efficient integration and processing of massive but scattered
financial data is one of the important foundations for panoramic fraud
detection. Finally, the flexibility, robustness, and interpretability challenges
of models need to be considered more seriously in the context of financial
fraud.
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