# **Graph Adversarial Attack**

#### **Adversarial Machine Learning**



 $\boldsymbol{x}$ 

"panda" 57.7% confidence



 $\operatorname{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ 

"nematode" 8.2% confidence

\_

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon" 99.3 % confidence

#### **Adversarial Attacks on Graph Structure**



#### **Defense: Structure Learning**

A straightforward method to deal with the structural perturbation is to find the adversarial edges and remove them.



# **Background: Existing Methods**

#### **Previous Methods**

Learn edge weights by a pair-wise metric function  $--S_{ij} = \phi(z_i, z_j)$ , Further, the structure can be optimized according to the weights matrix **S**.

- Compute the function via **original features**: GNNGuard, GCN-Jaccard
- Drawbacks: Lack of structural information Cause a trade-off.
- Optimize the structure via **representations (task-relevant)** learned by the classifier: GRCN
- Drawbacks: The quality of the representations co-varies with the downstream task performance.

| Ptb Rate | GCN   | GRCN  | GNNGuard | Jaccard |
|----------|-------|-------|----------|---------|
| 0%       | 83.56 | 86.12 | 78.52    | 81.79   |
| 5%       | 76.36 | 80.78 | 77.96    | 80.23   |
| 10%      | 71.62 | 72.42 | 74.86    | 74.65   |
| 20%      | 60.31 | 65.43 | 72.03    | 73.11   |

#### **Representations Are The Key**

#### Reliable Representations Make the Defender Stronger:

- Carrying feature information and in the meantime carrying **as much correct structure information** as possible
- Insensitive to structural perturbations and task-irrelevant

STABLE - an unsupervised pipeline for structure refining

# **Advantages of Unsupervised Learning**

#### Why is unsupervised learning?

- The unsupervised approach is relatively reliable because the objective is not directly attacked (**task-irrelevant**).
- The unsupervised pipeline can be viewed as a kind of pretraining, and the learned representations may have been trained to be invariant to certain useful properties (**modified structure here**).

#### **Preprocessing and Recovery Schema**

We choose graph contrastive learning as our backbone with two robustness-oriented designs

- **Preprocess** the structure by a simple schema:  $S_{ij} = sim(x_i, x_j)$ --Remove the easily detected adversarial edges
- The augmentation scheme in contrastive methods are naturally similar to adversarial attacks.

We generate *M* views by randomly **recovering** a small portion of the removed edges.

#### **Contrastive Model**



#### **Reliable Representations**

Recall our requirements for the reliable representations:

• Carrying feature information and in the meantime carrying **as much correct structure information** as possible

—The preprocessing and the effectiveness of contrastive learning meet this requirements.

#### **Reliable Representations**

• **Insensitive** to structural perturbations

The recovery can be viewed as injecting slight attacks on  $\mathcal{G}^p$ , which makes the representations insensitive to the perturbations. Recover Perturbed Graph *G* Roughly Preprocess  $\mathcal{G}^p$ shuffle The degrees of perturbation can be ranked as:  $G \gg G_1^p \approx G_2^p \cdots \approx G_M^p > G^p$ 

# **Graph Refining**

We can easily refine the structure by the learned representations.

**Prune the graph:** 
$$\mathbf{M}_{ij} = \operatorname{sim}(\mathbf{h}_i, \mathbf{h}_j) \longrightarrow \mathbf{A}_{ij}^R = \begin{cases} 1 & \text{if } \mathbf{M}_{ij} > t_2 \text{ and } \mathbf{A}_{ij} = 1 \\ 0 & \text{otherwise,} \end{cases}$$

Add helpful edges --- Link each node with *k* nodes that are most similar to it.



# The Vulnerability of GCN

We find GCN suffers from the renormalization trick.  $\hat{\mathbf{A}} = (\mathbf{D} + \mathbf{I}_N) (\mathbf{D} + \mathbf{I}_N) (\mathbf{D} + \mathbf{I}_N)^{-\frac{1}{2}}$ 

Fake neighbors will be assigned higher weights!

We can trust more on the high-degree neighbors

$$\boldsymbol{h}_{i}^{t} = \operatorname{ReLU}\left(\left(\sum_{j \in \mathcal{N}_{i}^{*}} \frac{(d_{i}d_{j})^{\alpha}}{Z} \boldsymbol{h}_{j}^{t-1} + \beta \boldsymbol{h}_{i}^{(t-1)}\right) \mathbf{W}_{\theta}^{t}\right)$$



Attack algorithms tend to link **2** low-degree nodes.

| Δ   | GCN   | GCN*  |
|-----|-------|-------|
| 0%  | 83.56 | 82.76 |
| 5%  | 76.36 | 78.17 |
| 10% | 71.62 | 74.23 |
| 20% | 60.31 | 69.59 |

## **Experimental Setup**

#### Datasets

#### Four public benchmark datasets

- **Cora** (Citation Graph)
- **Citeseer** (Citation Graph)
- **D** PubMed (Citation Graph)
- D Polblogs (Political Blog Graph)

# We only consider the largest connected connected component (LCC).

| Datasets | N <sub>LCC</sub> | E <sub>LCC</sub> | Classes | Features |
|----------|------------------|------------------|---------|----------|
| Cora     | 2,485            | 5,069            | 7       | 1433     |
| Citeseer | 2,110            | 3,668            | 6       | 3703     |
| Polblogs | 1,222            | 16,714           | 2       | /        |
| PubMed   | 19717            | 44338            | 3       | 500      |

#### **Compare methods**

#### Seven robust GNNs under 3 attack methods

MetaAttack

DICE

- **RGCN** 
  - Jaccard
    - GNNGuard **D** RANDOM
- GRCN

- **D** ProGNN
- □ SimpGCN
- **Elastic**

#### **Robustness Evaluation**

# RQ1: Does STABLE outperform the state-of-the-art defense models under different types of adversarial attacks?

| Dataset  | Ptb Rate | GCN              | RGCN             | Jaccard          | GNNGuard         | GRCN               | ProGNN                       | SimPGCN          | Elastic          | STABLE             |
|----------|----------|------------------|------------------|------------------|------------------|--------------------|------------------------------|------------------|------------------|--------------------|
|          | 0%       | 83.56±0.25       | $83.85 \pm 0.32$ | $81.79 \pm 0.37$ | $78.52 \pm 0.46$ | $86.12 {\pm} 0.41$ | $84.55 \pm 0.30$             | 83.77±0.57       | 84.76±0.53       | 85.58±0.56         |
|          | 5%       | 76.36±0.84       | $76.54 \pm 0.49$ | $80.23 \pm 0.74$ | $77.96 \pm 0.54$ | $80.78 \pm 0.94$   | $79.84 \pm 0.49$             | $78.98 \pm 1.10$ | $82.00{\pm}0.39$ | $81.40 \pm 0.54$   |
| Cora     | 10%      | $71.62 \pm 1.22$ | $72.11 \pm 0.99$ | $74.65 \pm 1.48$ | $74.86 \pm 0.54$ | $72.43 \pm 0.78$   | $74.22 \pm 0.31$             | $75.07 \pm 2.09$ | $76.18 \pm 0.46$ | $80.49{\pm}0.61$   |
|          | 15%      | 66.37±1.97       | $65.52 \pm 1.12$ | $74.29 \pm 1.11$ | $74.15 \pm 1.64$ | $70.72 \pm 1.13$   | $72.75 \pm 0.74$             | $71.42 \pm 3.29$ | $74.41 \pm 0.97$ | $78.55{\pm}0.44$   |
|          | 20%      | 60.31±1.98       | $63.23 \pm 0.93$ | $73.11 \pm 0.88$ | $72.03 \pm 1.11$ | $65.34 \pm 1.24$   | $64.40 \pm 0.59$             | $68.90 \pm 3.22$ | $69.64 \pm 0.62$ | $77.80{\pm}1.10$   |
|          | 0%       | 74.63±0.66       | $75.41 \pm 0.20$ | $73.64 \pm 0.35$ | $70.07 \pm 1.31$ | $75.65 \pm 0.21$   | $74.73 \pm 0.31$             | $74.66 \pm 0.79$ | $74.86 \pm 0.53$ | $75.82 \pm 0.41$   |
|          | 5%       | $71.13 \pm 0.55$ | $72.33 \pm 0.47$ | $71.15 \pm 0.83$ | $69.43 \pm 1.46$ | $74.47{\pm}0.38$   | $72.88 \pm 0.32$             | $73.54 \pm 0.92$ | $73.28 \pm 0.59$ | $74.08 \pm 0.58$   |
| Citeseer | 10%      | $67.49 \pm 0.84$ | $69.80 \pm 0.54$ | $69.85 \pm 0.77$ | $67.89 \pm 1.09$ | $72.27 \pm 0.69$   | $69.94 \pm 0.45$             | $72.03 \pm 1.30$ | 73.41±0.36       | $73.45{\pm}0.40$   |
| :        | 15%      | $61.59 \pm 1.46$ | $62.58 \pm 0.69$ | $67.50{\pm}0.78$ | $69.14 \pm 0.84$ | $67.48 \pm 0.42$   | $62.61 \pm 0.64$             | $69.82 \pm 1.67$ | $67.51 \pm 0.45$ | $73.15{\pm}0.53$   |
|          | 20%      | $56.26 \pm 0.99$ | $57.74 \pm 0.79$ | $67.01 \pm 1.10$ | $69.20 \pm 0.78$ | 63.73±0.82         | $55.49 \pm 1.50$             | $69.59 \pm 3.49$ | 65.65±1.95       | $72.76 {\pm} 0.53$ |
|          | 0%       | 95.04±0.11       | $95.38 \pm 0.14$ | /                | /                | $94.89 \pm 0.24$   | $95.93 \pm 0.17$             | $94.86 \pm 0.46$ | 95.57±0.26       | 95.95±0.27         |
|          | 5%       | $77.55 \pm 0.77$ | $76.46 \pm 0.47$ | /                | /                | $80.37 \pm 0.46$   | $93.48 \pm 0.54$             | $75.08 \pm 1.08$ | $90.08 \pm 1.06$ | $93.80{\pm}0.12$   |
| Polblogs | 10%      | $70.40 \pm 1.13$ | $70.35 \pm 0.40$ | /                | /                | $69.72 \pm 1.36$   | $85.81 \pm 1.00$             | $68.36 \pm 1.88$ | $84.05 \pm 1.94$ | $92.46{\pm}0.77$   |
|          | 15%      | $68.49 \pm 0.49$ | $67.74 \pm 0.50$ | /                | /                | $66.56 \pm 0.93$   | $75.60 \pm 0.70$             | $65.02 \pm 0.74$ | $72.17 \pm 0.74$ | $90.04{\pm}0.72$   |
|          | 20%      | $68.47 \pm 0.54$ | $67.31 \pm 0.24$ | /                | /                | $68.20 \pm 0.71$   | $73.66 \pm 0.64$             | $64.78 \pm 1.33$ | $71.76 \pm 0.92$ | $88.46{\pm}0.33$   |
| Pubmed   | 0%       | 86.83±0.06       | $86.02 \pm 0.08$ | 86.85±0.09       | $85.24 \pm 0.07$ | 86.72±0.03         | 87.33±0.18                   | 88.12±0.17       | 87.71±0.06       | 87.73± 0.11        |
|          | 5%       | 83.18±0.06       | $82.37 \pm 0.12$ | $86.22 \pm 0.08$ | $84.65 \pm 0.09$ | $84.85 \pm 0.07$   | $87.25 \pm 0.09$             | $86.96 \pm 0.18$ | $86.82 \pm 0.13$ | $87.59{\pm}0.08$   |
|          | 10%      | $81.24 \pm 0.17$ | $80.12 \pm 0.12$ | $85.64 \pm 0.08$ | $84.51 \pm 0.06$ | $81.77 \pm 0.13$   | $87.25 \pm 0.09$             | $86.41 \pm 0.34$ | $86.78 \pm 0.11$ | $87.46{\pm}0.12$   |
|          | 15%      | 78.63±0.10       | $77.33 \pm 0.16$ | $84.57 \pm 0.11$ | $84.78 \pm 0.10$ | $77.32 \pm 0.13$   | $\underline{87.20{\pm}0.09}$ | $85.98 \pm 0.30$ | $86.36 \pm 0.14$ | $87.38{\pm}0.09$   |
|          | 20%      | $77.08 \pm 0.2$  | $74.96 \pm 0.23$ | $83.67{\pm}0.08$ | $84.25 \pm 0.07$ | $69.89 \pm 0.21$   | $\underline{87.09{\pm}0.10}$ | $85.62 \pm 0.40$ | $86.04 \pm 0.17$ | $87.24{\pm}0.08$   |

#### **Robustness Evaluation**

RQ1: Does STABLE outperform the state-of-the-art defense models under different types of adversarial attacks?



# **Result of Sturcture Learning**

RQ2: Is the structure learned by STABLE better than learned by other methods?

| Method   | Total | Adversarial | Normal | Accuracy(%) |
|----------|-------|-------------|--------|-------------|
| Jaccard  | 1,008 | 447         | 561    | 44.35       |
| GNNGuard | 1,082 | 482         | 600    | 44.55       |
| STABLE   | 1,035 | 601         | 434    | 58.07       |

The statistics of the learned graphs

It can be observed that STABLE achieves the highest pruning accuracy, indicating that STABLE revise the structure more precisely via more reliable representations.

#### **Parameter Analysis**

RQ3: What is the performance with respect to different training parameters?



We list the specific values which achieve the best performance on Cora

| Ptb Rate | 0%   | 5%   | 10% | 15% | 20% | 35% | 50% |
|----------|------|------|-----|-----|-----|-----|-----|
| k        | 1    | 5    | 7   | 7   | 7   | 7   | 13  |
| α        | -0.5 | -0.3 | 0.3 | 0.6 | 0.6 | 0.7 | 0.8 |

#### **Ablation Study**

RQ4: How do the key components benefit the robustness?



# Why is Graph Attack so Destructive to GNNs?

We find a interesting phenomenon which inspires us to revisit this problem from a data distribution perspective.

- We formulate the distribution shift in graph adversarial attack scenario.
- We empirically and theoretically analyze the phenomena in graph attack and defense.
- Then, based on the analysis and observation, we provide nine practical tips to improve existing and future graph attack and defense.

# Thanks CQ&A

Name: Kuan Li | Email: <u>likuan20s@ict.ac.cn</u> Homepage: <u>https://likuanppd.github.io/</u>

