
SPEAR: A Structure-Preserving Manipulation Method for Graph
Backdoor Attacks

Yuanhao Ding†‡
Institute of Computing Technology,

Chinese Academy of Sciences
Beijing, China

dingyuanhao19@mails.ucas.ac.cn

Yang Liu∗†
Institute of Computing Technology,

Chinese Academy of Sciences
Beijing, China

liuyang2023@ict.ac.cn

Yugang Ji
Individual Researcher
Hangzhou, China

jiyugangcs@gmail.com

Weigao Wen
Individual Researcher
Hangzhou, China

weigaowen@gmail.com

Qing He†‡
Institute of Computing Technology,

Chinese Academy of Sciences
Beijing, China

heqing@ict.ac.cn

Xiang Ao∗†‡
Institute of Computing Technology,

Chinese Academy of Sciences
Beijing, China

aoxiang@ict.ac.cn

Abstract
Graph Neural Networks (GNNs) are vulnerable to backdoor at-
tacks, where adversaries implant malicious triggers to manipu-
late model predictions. Existing graph backdoor attacks are sus-
ceptible to defense mechanisms or robust classifiers because they
rely on subgraph injection or structural perturbations, e.g., cre-
ating additional edges to attach backdoor triggers to the original
graph. To enhance the stealthiness of graph backdoors, we propose
SPEAR, a novel structure-preserving graph backdoor attack that
avoids modifying the graph’s topology. SPEAR operates within
a limited attack budget by selectively perturbing node attributes
while ensuring the triggers exert significant influence through a
global importance-driven feature selection strategy. Additionally,
a neighborhood-aware trigger generator is employed to underpin
a high attack success rate by utilizing semantic information from
the neighborhood. SPEAR amplifies effectiveness and stealthiness
by combining subtle yet impactful attribute manipulation with
a refined trigger generation mechanism. Extensive experiments
demonstrate that SPEAR achieves state-of-the-art effectiveness in
bypassing defenses on real-world datasets, establishing it as a po-
tent and stealthy backdoor attack for graph-based tasks. Code is
available at https://github.com/yhDing/SPEAR.

CCS Concepts
• Computing methodologies→Machine learning; •Mathe-
matics of computing→ Graph algorithms; • Security and pri-
vacy;

∗Corresponding authors.
†Key Laboratory of AI Safety, Chinese Academy of Sciences. Xiang Ao is also at
Institute of Intelligent Computing Technology, CAS, Suzhou, China.
‡The authors are also with the University of Chinese Academy of Sciences, CAS.

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.
WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1274-6/25/04
https://doi.org/10.1145/3696410.3714665

Keywords
Graph Neural Network, Adversarial Attack, Backdoor Attack
ACM Reference Format:
Yuanhao Ding, Yang Liu, Yugang Ji, Weigao Wen, Qing He, and Xiang
Ao. 2025. SPEAR: A Structure-Preserving Manipulation Method for Graph
Backdoor Attacks. In Proceedings of the ACM Web Conference 2025 (WWW
’25), April 28-May 2, 2025, Sydney, NSW, Australia. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3696410.3714665

1 Introduction
Graph Neural Networks (GNNs) have become an indispensable tool
for learning and extracting insights from graph-structured data [21,
28, 34], which is prevalent in many real-world domains such as
social networks, molecular biology, and financial systems [2, 9, 14,
44]. The coremechanism that drives the success of GNNs ismessage-
passing, where the model iteratively aggregates information from
each node’s neighbors, producing node representations that encode
both local structure and feature information. This capability has
led GNNs to excel in various tasks, including node classification,
graph classification, and link prediction [15, 22, 37, 38].

Recent research [6, 35, 40] has shown that GNNs are vulnerable
to backdoor attacks, which pose significant threats in sensitive
applications such as fraud detection, cybersecurity, and healthcare.
In backdoor attacks, adversaries implant backdoors by injecting
malicious triggers into the target nodes and manipulating the labels
of these nodes to a target class. When a GNN is trained on the
dataset poisoned with these triggers, it easily learns the association
between the trigger and the manipulated class and is named a
backdoored GNN. When test samples containing the trigger are
presented to the backdoored GNN, the backdoor attack is deemed
successful if the backdoored GNN misclassifies the test samples
associated with the trigger into the target class.

In backdoor attacks, triggers are typically constructed with the
basic elements of data samples. Analogously to how pixel-level
visual patterns serve as triggers in computer vision [3, 11] and
word-level token-based triggers in NLP [25, 26], subgraphs are
natural triggers in graph data, where nodes and edges form the
fundamental building blocks [6, 35, 40]. For instance, SBA [40] is a
pioneering work that uses random or sampled subgraphs as triggers,
though its attack effectiveness is limited. GTA [35] introduces a

https://orcid.org/0009-0006-2416-8010
https://orcid.org/0000-0002-1525-0788
https://orcid.org/0009-0002-4824-9684
https://orcid.org/0000-0002-4597-6053
https://orcid.org/0000-0001-8833-5398
https://orcid.org/0000-0001-9633-8361
https://github.com/yhDing/SPEAR
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://doi.org/10.1145/3696410.3714665
https://doi.org/10.1145/3696410.3714665

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Yuanhao Ding et al.

learnable trigger generator, which adapts subgraphs to specific
samples, significantly improving attack performance. To evade
detection, other approaches such as UGBA [6] and DPGBA [41]
integrate regularization terms into their loss functions, allowing
them to bypass certain defense mechanisms. Beyond subgraph-
based triggers, other methods such as NFTA [4], perturb both node
features and graph structures to implant triggers. The implantation
of these triggers is typically categorized as local neighborhood
manipulation.

While existing graph backdoor attacks have demonstrated strong
performance, implanting triggers via local neighborhood manip-
ulation may hinder their stealthiness, i.e., the ability to remain
undetected and bypass defense mechanisms. The effectiveness of
the local neighborhood manipulation relies on the malicious edges
that link the triggers to the clean graph. Unlike the continuous and
subtle perturbations typical of attribute manipulation, these edges
are discrete and structurally conspicuous, making it considerably
more challenging to maintain a high level of stealthiness for the
attack. These anomalous edges, akin to a crack in the backdoor,
provide clear entry points for defense mechanisms to exploit. The
results of our empirical study in Table 1 indicate that neighborhood
perturbation-based attacks are vulnerable to at least one defense
strategy, whether anomalous edge detection or robust downstream
classifiers.

To overcome these limitations, designing a backdoor attack that
implants triggers without altering the graph’s topology presents a
promising solution to circumvent the creation of anomalous edges.
The challenges of developing such an attack lie in two aspects. First,
the budget for node attribute manipulation is limited. Although
routine in many attacks, performing all-dimensional feature pertur-
bation or generalization is costly and often infeasible in real-world
scenarios where security and privacy are major concerns. For ex-
ample, in financial systems, where nodes represent participants
and edges represent transactions, modifying sensitive attributes
such as credit records is impractical and likely to trigger alarms
within regulatory systems. Thus, practical constraints demand a
smaller attack budget, allowing only perturbations in limited fea-
ture dimensions. Second, the manipulated node attributes should be
reasonable. With a limited attack budget, minimizing modifications
is imperative to maintain the trigger’s stealthiness and restraining
significant semantic changes.

To tackle these issues, we propose an approach named SPEAR
(Structure-PresErving grAph backdooR attack). First, to maximize
the efficiency of the attack budget, we focus on effectively selecting
poisoned nodes by examining the variety and prediction uncertainty
of candidate nodes. Second, to ensure that the triggers exert signifi-
cant influence over the downstream classifier and generalize well
to unseen nodes, we implement a global importance-driven feature
selection strategy to identify the most impactful feature for trigger
implantation. The structure-preserving manipulation is achieved
via a trigger generator that leverages neighborhood-aware semantic
enrichment. In addition, we integrate a self-similarity regulariza-
tion term into the loss function to promote minimal modifications.
In summary, our main contributions can be summarized as follows:

• We empirically demonstrate the vulnerability of existing back-
door attacks to robust test models and anomalous edge detection,

Table 1: Attack success rate (%) of backdoor attacks under
different defenses on the dataset OGB-arxiv. The underlined
results indicate unsuccessful attacks compared with perfor-
mance without defense.

Defense SBA-Gen GTA UGBA DPGBA

None 47.52 74.99 97.39 94.65
OD 12.91 0.00 10.29 92.40

RIGBD 0.00 53.56 0.00 0.00
GNNGuard 40.03 0.94 97.29 91.22

leading to our proposal of a structure-preserving attack named
SPEAR.

• In SPEAR, we introduce a novel node selection method to miti-
gate antagonistic effects, a global importance-driven feature se-
lection method to enhance the effectiveness of trigger implanting,
along with a refined trigger generator to leverage neighborhood
information.

• Extensive experiments on real-world datasets with various test
and defense models demonstrate that SPEAR outperforms state-
of-the-art backdoor attacks.

2 Preliminaries
2.1 Notions
Let G = (V, E,X) represent an attributed graph with 𝑁 nodes,
where V is the node set, E ⊆ V × V is the edge set, and X =

{𝑥1, . . . , 𝑥𝑁 } is the original feature matrix of nodes, where 𝑥𝑖 ∈ R𝑑

is the node feature of 𝑣𝑖 . The adjacency matrix of the graph G
is denoted by A ∈ {0, 1}𝑁×𝑁 , with A𝑖 𝑗 = 1 indicating an edge
between nodes 𝑣𝑖 and 𝑣 𝑗 . The neighborhood of node 𝑣𝑖 , including
the node itself, is denoted by N𝑖 . In this paper, we focus on an
inductive semi-supervised node classification task, where a small
set of nodes V𝐿 ⊆ V in the training graph G are provided with
labels fromL = {1, . . . ,𝐶}, and the test graphG𝑇 = (V𝑇 , E𝑇 ,X𝑇) is
not available during the training stage. LetY = {𝑦1, . . . , 𝑦𝑁 } denote
the ground-truth labels of nodes in the training graph, with Y𝐿

and Y𝑈 denoting the ground-truth labels of labeled and unlabeled
nodes, respectively.

2.2 Threat Model
In this paper, following prior studies [35, 40, 41], we focus on gray-
box backdoor attacks on node classification tasks. In a gray-box
scenario, attackers have access to the training data, including node
attributes, graph structure, and label information, but lack knowl-
edge of the specific architecture or parameters of the target model.
The objective of the backdoor attack is to manipulate the down-
stream GNN classifier into producing malicious outputs on poi-
soned samples, while behaving normally on clean ones. To achieve
this, attackers poison the training set by implanting triggers into
a set of poisoned nodes, then labeling them with the target class.
Ideally, this approach ensures that the backdoored GNN associates
the trigger with the target label, causing any node containing the
trigger to be misclassified as the target class. However, the effective-
ness of typical graph backdoor attack lies on introducing malicious

SPEAR: A Structure-Preserving Manipulation Method for Graph Backdoor Attacks WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

edges which can be detected then eliminated by defenses, making
it significantly harder to achieve a high level of stealthiness for the
attack.

2.3 Problem Formulation
We consider a standard semi-supervised inductive node classi-
fication task in which the goal is to learn a mapping function
𝑓 : V → L, where V denote nodes in the training graph com-
prising of labelled nodes V𝐿 and unlabelled ones V𝑈 , L denotes
the ground-truth labels, and 𝑓 is a GNN classifier. Following the
standard training scheme of graph backdoor attack, we first poi-
son the training set by implanting triggers in target nodes before
classifier is trained. We denote V𝑃 ⊂ V𝑈 as the poisoned samples
selected from unlabelled nodes in the training graph. For each node
𝑣𝑃
𝑖

∈ V𝑃 , we transform it into a poisoned sample by implanting
trigger in attribute space and alter its ground-truth label as shown
in Eq. (1):

𝑥𝑃𝑖 = IMPLANT(T𝜙 (𝑣𝑃𝑖), 𝑥𝑖), 𝑦𝑃𝑖 = 𝑦𝑡 , (1)

where 𝑥𝑖 is the original feature, which is transformed into 𝑥𝑃
𝑖
after

trigger implanting, T𝜙 (·) denotes the trigger generator that takes
𝑣𝑖 as input, and 𝑦𝑡 ∈ L is the target label assigned by the attacker.
Taking the attack budget into account, the transformation also need
to satisfy the following inequality:

𝑑∑︁
𝑘=1

I(𝑥𝑖 [𝑘] ≠ 𝑥𝑃𝑖 [𝑘]) ≤ Δ𝐷 , (2)

where Δ𝐷 is the budget for attribute manipulation, I(·) is an indi-
cator function, which equals 1 when 𝑥𝑖 [𝑘] ≠ 𝑥𝑃

𝑖
[𝑘]. We denote the

modified features as D.
Given a GNN classifier 𝑓 trained on the poisoned training set,

ideally, its behavior is manipulated so that:

𝑓 (𝑥 𝑗 ,N𝑗) = 𝑦 𝑗 , 𝑓 (𝑥𝑃𝑗 ,N𝑗) = 𝑦𝑡 , (3)

for node 𝑣 𝑗 from an unseen test graph G𝑇 that is sampled from the
same data distribution as the training graph. Following the setting of
gray-box attack, the architecture and parameters of 𝑓 are unknown
to the attacker. Therefore, we adopt surrogate model 𝑓𝜔 to simulate
the downstream classifier. In the empirical riskminimization setting,
the objective is to minimize the loss function in Eq. (4) on the
training graph:

L𝑠𝑢𝑟 (𝜔,𝜙) =
∑︁

𝑣𝑖 ∈V𝐿

𝑙 (𝑓𝜔 (𝑥𝑖 ,N𝑖), 𝑦𝑖) +
∑︁

𝑣𝑖 ∈V𝑃

𝑙 (𝑓𝜔 (𝑥𝑃𝑖 ,N𝑖), 𝑦𝑡), (4)

where 𝜔 denotes the learnable parameter of 𝑓𝜔 , and 𝑙 (·) is the cross
entropy loss. Our goal is to learn the selection of poisoned nodes
V𝑃 , the selection of feature dimensions D for trigger implanting,
and the trigger generator T𝜙 by solving a bi-level optimization
problem:

min
V𝑃 ,D,T𝜙

∑︁
𝑣𝑖 ∈𝑉

𝑙 (𝑓𝜔∗ (𝑥𝑃𝑖 ,N𝑖), 𝑦𝑡),

s.t.(𝑖) 𝜔∗ = arg min
𝜔

L𝑠𝑢𝑟 (𝜔,𝜙),

(𝑖𝑖) |V𝑃 | ≤ Δ𝑃 , T𝜙 (𝑣𝑖) ∈ U,

(5)

where Δ𝑃 is the budget of poisoned nodes in training set, and U
denotes all triggers that meet the stealthiness requirement. Con-
sidering that jointly optimizingV𝑃 , D, and T𝜙 is computationally

prohibitive, we break the optimization into two steps. First, we
heuristically select poisoned nodes and trigger implanting dimen-
sions as a preprocessing step to approximate the optimalV𝑃 and
D. Then, we fix these selections to optimize T𝜙 .

3 Methodology
3.1 Overall Architecture of SPEAR
The overall architecture of our framework revolves around three
key components, namely poisoned node selection, feature selec-
tion, and trigger generator. Effective poisoned node selection is
achieved by assessing both the class variety and prediction un-
certainty among unlabelled nodes, focusing on those that meet
criteria for both effectiveness and stealthiness. To ensure that the
implanted triggers exert an impactful influence on the downstream
classifier while maintaining generalizability to unseen data, we
employ a global importance-driven feature selection strategy. This
method identifies the most critical feature dimensions for trigger
implantation by assessing their overall contribution to the model’s
prediction. Lastly, the trigger generator is designed to perform
structure-preserving manipulations, utilizing semantic informa-
tion from the neighborhood of poisoned nodes. The generator also
incorporates a self-similarity normalization term into the loss func-
tion, promoting minimal perturbations to enhance stealthiness. The
overall framework is illustrated in Fig. 1.

3.2 Effective Poisoned Nodes Selection
Given the extensive and diverse nature of graph data, the selection
of poisoned nodes is critical for ensuring efficient use of the attack
budget. Accordingly, the selection of poisoned nodes should adhere
to two principles: (i) the chosen nodes should effectively deceive the
downstream classifier into associating the trigger with the poisoned
label; and (ii) manipulations of these nodes should not have adverse
effects on the classifier’s performance on clean data.

Therefore, we propose selecting samples with high classifica-
tion uncertainty within each category as poisoned nodes, which
provides several notable advantages. First, sampling from different
categories provides class variety which is crucial for successfully
implanting targeted backdoor triggers across different class distri-
butions. Second, this approach helps to avoid the creation of strong
outliers, thereby mitigating the negative impact on the classifier’s
generalization, ensuring that the clean accuracy is intact. Besides,
robust samples with high classification confidence demonstrate a
strong semantic correlation between their attributes and true labels,
leading to antagonistic effects between the original attributes and
implanted triggers [1, 10], making it more complex for the classifier
to learn the mapping between triggers and the target label.

Recall that poisoned nodes are selected from the unlabeled train-
ing set V𝑈 , in order to obtain the uncertainty and pseudo labels,
we train a GNN classifier 𝑓𝑝 on clean data based on Eq. (6):

L𝑝𝑟𝑒 =
∑︁

𝑣𝑖 ∈V𝐿

𝑙 (𝑓𝑝 (𝑥𝑖 ,N𝑖), 𝑦𝑖) . (6)

For each node 𝑣𝑖 in the training set, its classification uncertainty
and pseudo label are calculated as follows:

𝐻 (𝑣𝑖) = −
∑︁
𝑐∈L

𝑃𝑣𝑖 (𝑐 |𝑓𝑝) log 𝑃𝑣𝑖 (𝑐 |𝑓𝑝), 𝑌 (𝑣𝑖) = 𝑓𝑝 (𝑥𝑖 ,N𝑖), (7)

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Yuanhao Ding et al.

+

-

Clean Training Graph 𝒢

+

-

Poisoned Node Selection

Feature Selection

Importance ↑

Uncertainty ↑

Class Variety ↑

Sensitivity ↓

Surrogate GNN Model 𝑓𝑠

Trigger Generator 𝓣𝒕

Structure-Preserving Manipulation

𝒢𝑃

𝜃𝑡

𝜃𝑠

+

-

Poisoned Training Graph 𝒢𝑃

𝒱𝑃

𝒟

Clean Test Graph

Classifier

Trained on 𝒢𝑃

Poisoned Test Graph

Manipulated Prediction

+
+

+
+

-
-

𝒯𝑡

+
+

𝒩

+

Candidate Selection Inference

Figure 1: Overall framework of SPEAR. We use ‘+’ and ‘-’ to denote the annotated labels, with shades of orange and green
indicating the corresponding ground-truth labels. During the training phase (blue background), SPEAR selects target nodesV𝑃 ,
identifies high global-importance features D, and optimizes the trigger generator T𝑡 to produce the poisoned graph G𝑃 . The
downstream classifier is trained on G𝑃 and is embedded with backdoor consequently. In the inference phase (green background),
SPEAR implants triggers into the test graph to manipulate the classifier’s predictions.

where L denotes label set, and 𝑃𝑣𝑖 (𝑐 |𝑓𝑝) indicates the confidence of
𝑓𝑝 that node 𝑣𝑖 belongs to class 𝑐 . For nodes assigned with pseudo-
label 𝑐 , we rank them in descending order by their classification
uncertainty, as defined in Eq. (7), and denote the resulting sequence
as 𝑇𝑐 . Given the size of poisoned nodes Δ𝑃 , the final selected node
set V𝑃 can be written as:

V𝑃 =
⋃
𝑐∈L

𝑇𝑐

[
:
⌊
Δ𝑃

𝐶

⌋]
. (8)

3.3 Global Importance-Driven Feature Selection
As mentioned in Sec. 1, performing all-dimension manipulation
is impractical in real-world scenarios, so we set a budget Δ𝐷 to
restrict the number of poisoned features, and introduce F to denote
sensitive features that are not allowed to be modified. Considering
that the dimension of node features is typically large for graph data,
as shown in Table 2, randomly selecting poisoned features exhibits
high instability and may waste the attack budget. Therefore, we
need to determine which dimensions the triggers should be im-
planted in. To enhance the influence of the trigger on the prediction
result, we propose selecting the most important features, that is,
the features that contribute the most to the classifier’s prediction.

The challenge lies in selecting an appropriate criterion to mea-
sure the importance of features. One straightforward approach is
to compute Shapley values for feature combinations that satisfy the
budget for each node individually to decide the candidate feature
set. However, it is computationally expensive and fails to generalize
to test nodes that are unseen during the training phase. Additionally,
inconsistent trigger placement across different nodes can confuse
the classifier, weakening its ability to associate the trigger with the

target label. Hence, inspired by [5], we aggregate information from
all labeled nodes to compute the global importance of each feature,
and greedily select the top-Δ𝐷 most important features.

Given the complete feature setD𝑎 and aGNN classifier 𝑓𝑝 trained
on clean graph, we define the global predictive power of a subset
S as 𝑟 (S):

𝑟 (S) = 𝑇 −
∑︁

𝑣𝑖 ∈V𝐿

[
𝑙 (𝑓𝑝 (𝑥S𝑖 ,NS

𝑖), 𝑦𝑖)
]
, (9)

where S ⊆ D𝑎 , 𝑇 represents a constant value for the mean predic-
tion loss of 𝑓𝑐 , 𝑥S𝑖 denotes the partial feature of node 𝑣𝑖 according to
S, and 𝑙 (·) is the cross entropy loss. For each feature𝑚, we compute
its global importance in Eq. (10) by calculating a weighted average
of the incremental changes when adding𝑚 to subsets S:

𝜙 (𝑚) = 1
|D𝑎 |

∑︁
𝑆⊆D𝑎\{𝑚}

(
|D𝑎 | − 1

|S|

)−1
(𝑟 (S ∪ {𝑚}) − 𝑟 (S)) .

(10)
After obtaining the global importance of the features, we sort them
in descending order and ensure the feature budget and sensitivity
constraints are met to obtain the selected feature set D:

D = (arg sort
𝑚

𝜙 (𝑚) \ F)[: Δ𝑑] . (11)

3.4 Neighborhood-Aware Trigger Generator
After deciding on the poisoned nodesV𝑃 and feature D, we pro-
ceed to implant the triggers into the training set. A key challenge in
backdoor attacks is generating effective triggers.We employ sample-
specific triggers generated by a learnable generator T𝑡 , which is

SPEAR: A Structure-Preserving Manipulation Method for Graph Backdoor Attacks WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

parameterized by 𝜃𝑡 . The optimization objective of the trigger gen-
erator is equivalent to solving a simplified optimization problem in
Eq. (5), formulated as:

min
𝜃𝑡

∑︁
𝑣𝑖 ∈V𝐿

𝑙 (𝑓𝑠∗ (𝜏𝑖 ,N𝑖), 𝑦𝑡)

s.t. 𝜃∗𝑠 = arg min
𝜃𝑠

L𝑠𝑢𝑟 (𝜃𝑠 , 𝜃𝑡), T𝑡 (𝑣𝑖) ∈ U,

(12)

where 𝜃𝑠 is the learnable parameter of surrogate model 𝑓𝑠 and 𝜏𝑖
represents the node feature after trigger implanting. For simpli-
fication, we denote the loss function in the upper-level objective
as L𝑎𝑡𝑘 , which effectively guides T𝑡 to produce triggers that can
generalize to various nodes in V .

Existing backdoor attacks usually take attributes as input, yet
we argue that, in order to boost the trigger’s efficacy, the core idea
is to leverage neighborhood information from the target nodes,
ensuring the trigger is well-adapted to graph-structured data. For
each nodes 𝑣𝑖 , its neighborhood-aware encoding can be obtained
through an aggregation function:

ℎ𝑖 = AGGREGATE(𝑙) ({𝑥𝑢 : 𝑣𝑢 ∈ N (𝑙)
𝑖

}), (13)

whereN (𝑙)
𝑖

denotes the neighbors of node 𝑣𝑖 that are at most 𝑙 hops
away. Using ℎ𝑖 as input, the trigger for the node 𝑣𝑖 can be defined
as T𝑡 (ℎ𝑖). Then we can implant the trigger and obtain the poisoned
node attribute 𝜏𝑖 :

𝜏𝑖 = 𝑥𝑖 + T𝑡 (ℎ𝑖), (14)

where T𝑡 (ℎ𝑖) is constrained to be zero outside the features defined
byD. In our experiments, we observe that the choice of aggregation
function has a vital influence on the quality of triggers. Optimal
performance is achieved when the aggregation function and the
surrogate model share the same architecture and parameters. We
believe this effectiveness stems from the surrogate model closely
simulating the behavior of a backdoored model, thus ensuring that
the generated triggers are well-aligned with a manipulated model’s
decision-making process.

Even though limiting the number of perturbed features enhances
the trigger’s stealthiness, it still remains essential to further con-
strain the magnitude of these perturbations to prevent substantial
semantic shifts. Thus, we propose a self-similarity loss function,
defined as:

L𝑠𝑖𝑚 (𝜃𝑡) =
∑︁

𝑣𝑖 ∈V𝑃

− log
(
1 + 𝛼

(
1 − 𝑥𝑖 · 𝜏𝑖

∥𝑥𝑖 ∥2∥𝜏𝑖 ∥2

))
, (15)

where 𝛼 controls the contribution of the self-similarity loss.
Combining Eq. (12) and Eq. (15), the final objective can be for-

mulated as follows:
min
𝜃𝑡

L𝑎𝑡𝑘 (𝜃∗𝑠 , 𝜃𝑡) + L𝑠𝑖𝑚 (𝜃𝑡)

s.t. 𝜃∗𝑠 = arg min
𝜃𝑠

L𝑠𝑢𝑟 (𝜃𝑠 , 𝜃𝑡).
(16)

Optimizing Eq. (16) directly can be computationally expensive, so
we solve it with an alternative optimization schema as [46] does.
In inner-level optimization, we update 𝜃𝑠 for 𝐸 iterations on G𝑃 to
accelerate the training process:

𝜃
(𝑒+1)
𝑠 = 𝜃

(𝑒)
𝑠 − 𝛾𝑠∇𝜃𝑠L𝑠𝑢𝑟 (𝜃 (𝑒)𝑠 , 𝜃𝑡), (17)

Table 2: Dataset statistics

Datasets Nodes Edges Features Classes

Cora 2,708 5,429 1,443 7
Pubmed 19,717 44,338 500 3

OGB-arxiv 169,343 1,166,243 128 40

where 𝜃
(𝑒)
𝑠 is the learnable parameter of surrogate model 𝑓𝑠 in

the 𝑒-th iteration, and 𝛾𝑠 is the corresponding learning rate. In
upper-level optimization, we fix 𝜃𝑠 and update 𝜃𝑡 using a first-order
approximation:

𝜃
(𝑘+1)
𝑡 = 𝜃

(𝑘)
𝑡 − 𝛾𝑡∇𝜃𝑡

(
L𝑎𝑡𝑘 (𝜃∗𝑠 , 𝜃

(𝑘)
𝑡) + L𝑠𝑖𝑚 (𝜃 (𝑘)𝑡)

)
, (18)

where 𝜃 (𝑘)𝑡 is the learnable parameter of the trigger generator T𝑡
in the 𝑘-th iteration, 𝛾𝑡 is the learning rate of T𝑡 , and 𝜃∗𝑠 is he latest
value of 𝜃𝑠 obtained from the lower-level optimization. Once 𝜃𝑡 is
obtained, we use T𝑡 to update the poisoned graph G𝑃 . The detailed
training algorithm can be found in Algorithm 1.

4 Experiments
In this section, we empirically analyze the effectiveness and stealth-
iness of SPEAR on various datasets. Specifically, we aim to answer
the following research questions:
• RQ1:Does SPEAR outperform the state-of-the-art backdoormod-
els under various defenses?

• RQ2: What is the impact of different attack budgets on SPEAR’s
performance?

• RQ3: How do the key components contribute to the attack per-
formance?

• RQ4: How does SPEAR balance training time and performance?

4.1 Experimental Settings
4.1.1 Datasets. To evaluate the effectiveness of our proposed
method, we conduct experiments on three widely used datasets, i.e.,
Cora, Pubmed [27], and OGB-arxiv [13], which correspond to small,
medium, and large graphs, respectively. The detailed statistics of
these datasets are presented in Table 2.

4.1.2 Baselines. We compare SPEAR against five representative
and state-of-the-art graph backdoor attack methods, namely SBA-
Samp, SBA-Gen [40], GTA [35], UGBA [6], and DPGBA [41].
To assess the stealthiness of SPEAR, we implement three graph
backdoor defenses: Prune [6], OD [41], and RIGBD [42]. Addition-
ally, to validate its stealthiness and transferability, we conduct tests
across various models on OGB-arxiv, including prominent GNN
architectures such as GCN [15], GraphSAGE [12], and GAT [31],
as well as robust GNNs likeGNNGuard [39] andRobustGCN [43].
Comprehensive details regarding these methods can be found in
Appendix B.

4.1.3 Evaluation. Following [6, 42], we perform experiments on
the inductive node classification task, where the test graph is un-
seen by both the attacker and the victim model before inference.
To evaluate effectiveness and evasiveness, we use two metrics: (i)

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Yuanhao Ding et al.

Table 3: Backdoor attack results (ASR (%) | CA (%)) under different defenses. For clean graphs (Clean), only clean accuracy is
reported. The top two performances in terms of ASR are highlighted in bold and underline.

Datasets Defense Clean SBA-Samp SBA-Gen GTA UGBA DPGBA SPEAR

Cora

None 83.49 29.52 | 82.49 44.65 | 82.96 91.79 | 84.07 96.05 | 83.70 95.67 | 82.96 98.85 | 83.96
Prune 81.48 16.70 | 82.98 19.56 | 83.19 0.06 | 84.04 97.41 | 82.82 16.97 | 78.52 97.78 | 82.66
OD 83.82 34.70 | 83.00 44.10 | 83.60 44.00 | 84.81 0.00 | 83.60 94.78 | 84.08 96.31 | 84.07

RIGBD 83.41 11.56 | 83.04 0.03 | 82.75 0.00 | 83.70 29.33 | 83.33 0.01 | 85.19 91.56 | 83.33

Pubmed

None 84.93 26.47 | 85.13 29.16 | 85.03 92.49 | 85.11 93.17 | 85.44 95.64 | 83.97 95.03 | 85.08
Prune 84.31 22.26 | 85.08 20.99 | 85.08 23.36 | 85.08 91.01 | 84.35 64.25 | 85.29 96.70 | 85.24
OD 85.27 21.05 | 85.29 28.45 | 85.44 85.39 | 85.34 20.84 | 84.53 91.99 | 84.37 92.04 | 85.64

RIGBD 84.86 0.00 | 84.35 0.00 | 84.71 0.01 | 84.32 0.01 | 85.13 0.01 | 84.32 95.33 | 84.78

OGB-arxiv

None 65.60 17.70 | 65.19 47.52 | 65.03 74.99 | 63.22 97.39 | 65.65 94.65 | 64.56 96.95 | 66.91
Prune 63.22 0.04 | 63.64 0.02 | 63.53 0.00 | 63.32 94.81 | 63.49 0.00 | 63.27 98.66 | 64.83
OD 65.71 12.91 | 64.18 40.03 | 64.22 0.00 | 64.73 10.29 | 65.03 92.84 | 65.12 88.92 | 66.17

RIGBD 65.53 0.00 | 64.08 0.00 | 63.97 53.56 | 64.03 0.00 | 65.21 0.00 | 65.24 96.20 | 65.96

Table 4: Backdoor attack results (ASR (%) | CA (%)) on different testmodels using theOGB-arxiv dataset. The top two performances
in terms of ASR are highlighted in bold and underline.

Test Models Clean SBA-Samp SBA-Gen GTA UGBA DPGBA SPEAR

GCN 65.60 17.70 | 65.19 47.52 | 65.03 74.99 | 63.22 97.39 | 65.65 94.65 | 64.56 96.95 | 66.91
GAT 66.25 49.75 | 65.06 94.86 | 65.01 1.72 | 63.00 96.53 | 65.08 95.88 | 64.79 96.86 | 64.56

GraphSAGE 65.86 21.64 | 65.47 40.49 | 65.44 96.67 | 65.20 96.61 | 65.20 78.30 | 65.33 97.93 | 65.50
GNNGuard 66.03 22.59 | 64.66 39.76 | 64.60 0.94 | 65.14 97.29 | 65.64 91.22 | 63.94 97.64 | 65.65
RobustGCN 61.36 56.50 | 62.03 55.03 | 64.02 86.86 | 61.01 94.93 | 61.19 89.90 | 61.08 95.99 | 61.37

attack success rate (ASR), which measures the likelihood that the
backdoored GNN classifies trigger-implanted nodes into the target
class 𝑦𝑡 ; and (ii) clean accuracy (CA), which measures the classifica-
tion accuracy of the backdoored GNN on clean nodes. We randomly
mask out 20% of the nodes in each dataset, with half designated as
target nodes for assessing attack performance and the other half
as clean test nodes to evaluate performance on clean data. The
remaining 80% of nodes form the training graph, where 10% of the
nodes are used for labeled training and another 10% for validation.

4.1.4 Implementation. For SPEAR, the rate of poisoned nodes in
training data is set to less than 1% for each dataset, and the feature
budget Δ𝐷 = max(0.02𝑑, 5), where 𝑑 is the dimension of node
attribute. For baseline attack methods, we adopt the same rate of
poisoned nodes, and set the trigger size to 3 with all-dimensional
manipulable generated nodes. A two-layer MLP is deployed as
trigger generator. As for the surrogate model, a two-layer GCN
is used for all attack methods. Each experiment is run five times
per architecture, and the average ASR and CA are reported. More
details can be found in Appendix C.

4.2 Attack Performance
To answer RQ1, we evaluate SPEAR against baseline backdoor
attacks across three datasets with or without defenses. To further

assess the transferability and stealthiness, we vary the test models
from prominent GNN architectures to robust GNNs.

4.2.1 Comparison with Baseline Attacks. Table 3 shows the per-
formance on three datasets against baseline attacks. The top two
performances are highlighted in bold and underline. From this
experiment, we have the following observations:
• All baseline attacks fail to bypass at least one defense across all
datasets, revealing their vulnerabilities. Specifically, SBA-Samp
and its variant consistently exhibit lower ASRs, while GTA fails
under Prune and OD defenses in most cases. UGBA and DPGBA
benefit from specific countermeasures, showing resistance to
Prune and OD, respectively, but remain ineffective against other
defenses. In contrast, SPEAR shows significantly smaller ASR
drops across all defenses, highlighting its superior stealthiness.

• When no defense is applied, SPEAR consistently achieves compa-
rable or better ASR compared with baselines across all datasets,
demonstrating its effectiveness. This consistent performance
highlights SPEAR’s ability to implant effective and impactful
triggers without producing anomalous edges.

• SPEAR maintains CA levels similar to the baselines, and often
higher than those on the clean graph, both with and without de-
fense methods. This shows that the SPEAR-backed downstream
classifier preserves its classification ability in clean samples, fur-
ther highlighting the stealthiness of SPEAR.

SPEAR: A Structure-Preserving Manipulation Method for Graph Backdoor Attacks WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia
A

S
R

 (
%

)

Ratio of Poisoned Nodes (%)

 Pubmed

 OGB-arxiv

0.05 0.1 0.2 0.5 1 2 5

99

97

95

93

91

89
A

S
R

 (
%

)
Ratio of Poisoned Feature (%)

 Pubmed

 OGB-arxiv

0.2 0.5 1 2 5 10 15

99

97

95

93

91

89

Figure 2: Impact of size of attack budget.

• We note that SPEAR’s ASR on OGB-arxiv against ODwas slightly
lower than that of DPGBA by about 4%. This discrepancy can be
attributed to DPGBA’s distribution-preserving module, which is
tailored for out-of-distribution detectors, enhancing its ability
to bypass OD. However, this advantage is less effective against
other defense mechanisms. In contrast, SPEAR focuses on over-
all stealthiness, enabling it to demonstrate resilience against a
broader range of defenses.

4.2.2 Performance with Different Test Models. Table 4 shows the
performance of SPEAR and baseline models with different test mod-
els on OGB-arxiv, including three mainstream GNN models (GCN,
GAT and GraphSAGE) and two robust GNN models (GNNGuard
and RobustGCN), to demonstrate its transferability and stealthiness.
From the table, we make the following observations:

• For the two robust GNN models, GNNGuard calculates edge
pruning probabilities through a non-linear transformation, while
RobustGCN uses Gaussian distributions to represent nodes and
employs a variance-based attention mechanism. Results demon-
strate that SPEAR is resistant to both GNNGuard and RobustGCN,
showcasing its ability to bypass robust GNNs that focus on either
graph structure or node attributes.

• SPEAR maintains leading ASR across all test models compared
to baseline attacks. Given that we fix the surrogate model to be
a 2-layer GCN while varying the test models, such performance
demonstrates SPEAR’s ability to generate triggers that effectively
adapt to different GNN architectures.

4.3 Impact of Attack Budget
To answer RQ2, we conduct experiments to evaluate the sensitiv-
ity of SPEAR under different attack budgets. Specifically, for V𝑃 ,
we vary the ratio of poisoned nodes in the training graph across
{0.05, 0.1, 0.2, 0.5, 1, 2, 5}%, and for D, we adjust the ratio of manip-
ulated features to {0.2, 0.5, 1, 2, 5, 10, 15}%, with at least one feature
manipulated. Fig. 2 shows the results on Pubmed and OGB-arxiv.
We only report attack success rate, as no notable changes in clean
accuracy were detected across all baselines and SPEAR. From Fig. 2
we can observe that:

• As the ratio of poisoned nodes grows, SPEAR’s ASR shows a
consistent increase on both datasets, highlighting that it can ef-
fectively leverage a larger attack budget to achieve better results.
Meanwhile, SPEAR maintains an ASR above 89% even with a

70

75

80

85

90

95

100

Cora Pubmed OGB-arxiv

A
S

R
 (

%
)

SPEAR-NE SPEAR-RN
SPEAR-RF SPEAR

Figure 3: Comparisons between SPEAR and its variants.

poisoned node ratio as low as 0.05%, showcasing its efficient use
of the attack budget.

• When varying the ratio of features budget D, similar trends
are observed. The ASR increases steadily as the proportion of
perturbed features grows, indicating that SPEAR benefits from
manipulating more features. Even with a feature budget of just
1%, meaning that only 1 out of 128 features is manipulable in
OGB-arxiv, the attack remains highly effective. This confirms
that SPEAR can still be applied in real-world environments where
feature sensitivity is a critical concern.

4.4 Ablation Study
To answer RQ3, we conduct an ablation study to examine the contri-
butions of the key components in SPEAR: the node selectionmodule,
the feature selection module, and the neighborhood-aware mecha-
nism in trigger generation. To evaluate the effectiveness of node
selection, we design a variant of SPEAR named SPEAR-RN, which
randomly selects poisoned nodes in the training graph. To assess the
contribution of the global importance-driven feature selection strat-
egy, we replace the original feature selection module with random
selection, naming it SPEAR-RF. We also introduce a variant called
SPEAR-NE, where an MLP is used to substitute the aggregation
function in Eq. (13) to evaluate the role of the neighborhood-aware
mechanism in trigger generation. Hyperparameters for each variant
are tuned based on validation set performance. Fig. 3 illustrates the
results, showing that:

• We observe a notable drop in ASR for SPEAR-NE compared to
SPEAR, with reductions of 22.47% on Cora, 4.48% on Pubmed,
and 1.14% on OGB-arxiv. This result highlights the crucial role
of the neighborhood-aware mechanism in SPEAR’s effectiveness.
We infer that the larger benefit observed on Cora arises from
its simple local structure and high homophily, which allow the
aggregation function to extract more relevant information and
thus enhancing trigger generation.

• SPEAR achieves higher ASR than its variants, SPEAR-RN and
SPEAR-RF, affirming the contributions of both the node selection
and feature selection modules. We notice that the advantage of
the global importance-driven feature selection method becomes
more pronounced as the feature size increases. This suggests that
the method is highly effective at identifying influential features
from large candidate sets, a critical capability for datasets with a
large number of features.

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Yuanhao Ding et al.

ିଵ ଵ ଶ ଷ

8.E+00
4.E+02
4.E+01
7.E+00
1.E-01

SPEAR
DPGBA
UGBA
GTA
SBA-GEN

Log Scale Training Time (s)

A
ve

ra
ge

 A
S

R
 (

%
)

100

80

60

40

20

(a) Pubmed

ିଵ ଵ ଶ ଷ

2.E+01
8.E+02
1.E+02
3.E+01
2.E-01

SPEAR
DPGBA
UGBA
GTA
SBA-GEN

Log Scale Training Time (s)
A

ve
ra

ge
 A

SR
 (

%
)

100

80

60

40

20

(b) OGB-arxiv

Figure 4: Training time of trigger generator vs. performance

4.5 Trade-off between Time and Performance
To answer RQ4, we conduct experiments examining the trade-off
between the training time of the trigger generator and the average
ASR on Pubmed and OGB-arxiv. We compute the average ASR both
with and without defenses, following the setup in Sec. 4.2.1. For
the learnable trigger generators in SPEAR, DPGBA, UGBA, and
GTA, the same number of training epochs is used. On OGB-arxiv,
we adopt the simplified version of DPGBA, which is designed to
handle large-scale graphs. The experiments are performed on an
NVIDIA GeForce RTX 4090 with 24GB of memory, and the results
are shown in Fig. 4. Compared to other attacks with similar or
shorter training time, SPEAR significantly outperforms SBA-Gen
and GTA in terms of average ASR. In contrast, DPGBA and UGBA
require considerably more time for training the trigger generator,
e.g., DPGBA takes 391.98 seconds on Pubmed, making them 50.51×
and 4.84× slower than SPEAR, respectively. Overall, SPEAR strikes a
superior balance between attack success rate and training efficiency,
making it a more practical choice for real-world applications.

5 Related Works
5.1 Adversarial Attacks against GNNs
GNNs are indispensable tools for complex graph-structured data
analysis [19, 23, 31], excelling in tasks like node classification and
link prediction [34, 37]. Foundational models such as Graph Con-
volutional Networks (GCN) [15] and GraphSAGE [12] offer scal-
able solutions, driving the adoption of GNNs across fields, includ-
ing fraud detection, biological systems, and recommendation sys-
tems [2, 8, 14, 33]. However, GNNs remain vulnerable to adversarial
attacks [7, 16, 17, 45].

Adversarial attacks exploit inherent vulnerabilities of GNN
models, leading to either reduced accuracy or manipulated pre-
dictions [18, 29, 46]. Broadly classified into evasion and poison-
ing attacks, these methods undermine GNNs at different stages.
Evasion attacks occur during the testing phase, where adver-
saries perturb the graph structure or node attributes of a trained
model [30, 32, 36]. Poisoning attacks, on the other hand, target
the training phase, where attackers tamper with training data to
mislead the model [20, 24, 46].

As a specific form of poisoning attack, backdoor attacks im-
plant triggers that activate malicious behavior only under certain
conditions, making them particularly hard to detect and defend

against [35, 40]. This growing threat underscores the urgent need
to address security concerns in GNNs.

5.2 Backdoor Attacks and Defenses on GNNs
Backdoor attacks implant malicious triggers within training data,
causing the model to function normally under standard condi-
tions but misbehave with trigger-implanted samples. Early methods
like [40] used subgraph-based backdoors with universal triggers.
More recent techniques, such as GTA [35], generate adaptive trig-
gers tailored to individual samples. To improve stealthiness, meth-
ods like UGBA [6] and DPGBA [41] use regularization terms to
evade anomalous edge detection. NFTA [4] manipulates both node
features and graph structure, but its reliance on binary features
limits adaptability. Our method differs by: (i) manipulating the
attribute space to avoid anomalous edges, and (ii) using a novel
candidate selection method that adapts to real-world constraints.

To counteract backdoor attacks, several defenses have been pro-
posed. Among these, anomalous edge detection stands out as a
promising approach. Prune [6] aims to mitigate the effect of trig-
gers by identifying and removing edges that deviate from the ho-
mophily assumption. Another approach, OD [41], identifies out-of-
distribution edges by filtering those with the highest reconstruction
errors. By analyzing prediction variance after removing anomalous
edges, RIGBD [42] was developed to identify compromised target
nodes and mitigate their impact on downstream tasks. Furthermore,
robust GNN models such as GNNGuard [39] and RobustGCN [43]
have demonstrated resistance to backdoor attacks. Our proposed
method is capable of bypassing such defenses as we avoid introduc-
ing anomalous edges through structure-preserving manipulation
and constrain the magnitude of manipulation to prevent substantial
semantic shifts.

6 Conclusion
We propose SPEAR, a structure-preserving backdoor attack that
exploits GNN vulnerabilities while minimizing detection risks. Un-
like traditional attacks that alter graph structure, SPEAR preserves
the graph’s topology and focuses on perturbing node attributes.
By employing novel selection methods and neighborhood-aware
trigger generation, SPEAR achieves a balance between attack suc-
cess rate and stealthiness, making it ideal for sensitive graph-based
applications. Extensive experiments on real-world datasets show
that SPEAR outperforms existing methods in both effectiveness
and stealth, even against robust defenses. This work underscores
the growing threat of stealthy, structure-preserving backdoor at-
tacks as GNNs are deployed in security-sensitive domains. Future
research may explore optimizations in trigger generation and de-
fenses specifically targeting attribute-based backdoor attacks.

Acknowledgments
The research work is supported by National Key R&D Plan
No.2022YFC3303302, the National Natural Science Foundation of
China under Grant (No. U2436209, 62476263, 62406307). Xiang Ao
is also supported by the Beijing Nova Program 20230484430, the
Innovation Funding of ICT, CAS under Grant No. E461060. Yang
Liu is also supported by the Postdoctoral Fellowship Program of
CPSF under Grant Number GZB20240761.

SPEAR: A Structure-Preserving Manipulation Method for Graph Backdoor Attacks WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

References
[1] Zeyuan Allen-Zhu and Yuanzhi Li. 2022. Feature purification: How adversarial

training performs robust deep learning. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS). IEEE, 977–988.

[2] Pietro Bongini, Monica Bianchini, and Franco Scarselli. 2021. Molecular gen-
erative graph neural networks for drug discovery. Neurocomputing 450 (2021),
242–252.

[3] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
backdoor attacks on deep learning systems using data poisoning. arXiv preprint
arXiv:1712.05526 (2017).

[4] Yang Chen, Zhonglin Ye, Haixing Zhao, and Ying Wang. 2023. Feature-Based
Graph Backdoor Attack in the Node Classification Task. International Journal of
Intelligent Systems 2023, 1 (2023), 5418398.

[5] Ian Covert, Scott M Lundberg, and Su-In Lee. 2020. Understanding global feature
contributions with additive importance measures. Advances in Neural Information
Processing Systems 33 (2020), 17212–17223.

[6] Enyan Dai, Minhua Lin, Xiang Zhang, and Suhang Wang. 2023. Unnoticeable
backdoor attacks on graph neural networks. In Proceedings of the ACM Web
Conference 2023. 2263–2273.

[7] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.
2018. Adversarial attack on graph structured data. In International conference on
machine learning. PMLR, 1115–1124.

[8] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In The world wide web
conference. 417–426.

[9] Wenqi Fan, Yao Ma, Qing Li, Jianping Wang, Guoyong Cai, Jiliang Tang, and
Dawei Yin. 2020. A graph neural network framework for social recommendations.
IEEE Transactions on Knowledge and Data Engineering 34, 5 (2020), 2033–2047.

[10] Yinghua Gao, Yiming Li, Linghui Zhu, Dongxian Wu, Yong Jiang, and Shu-Tao
Xia. 2023. Not all samples are born equal: Towards effective clean-label backdoor
attacks. Pattern Recognition 139 (2023), 109512.

[11] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. Badnets:
Evaluating backdooring attacks on deep neural networks. IEEE Access 7 (2019),
47230–47244.

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[13] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[14] Mengda Huang, Yang Liu, Xiang Ao, Kuan Li, Jianfeng Chi, Jinghua Feng, Hao
Yang, and Qing He. 2022. Auc-oriented graph neural network for fraud detection.
In Proceedings of the ACM web conference 2022. 1311–1321.

[15] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings.

[16] Kuan Li, YiWen Chen, Yang Liu, JinWang, Qing He, Minhao Cheng, and Xiang Ao.
2023. Boosting the Adversarial Robustness of Graph Neural Networks: An OOD
Perspective. In The Twelfth International Conference on Learning Representations.

[17] Kuan Li, Yang Liu, Xiang Ao, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He.
2022. Reliable representations make a stronger defender: Unsupervised structure
refinement for robust gnn. In Proceedings of the 28th ACM SIGKDD conference on
knowledge discovery and data mining. 925–935.

[18] Kuan Li, Yang Liu, Xiang Ao, and Qing He. 2023. Revisiting graph adversarial
attack and defense from a data distribution perspective. In The Eleventh Interna-
tional Conference on Learning Representations.

[19] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated
Graph Sequence Neural Networks. In 4th International Conference on Learning
Representations, ICLR 2016, May 2-4, 2016, Conference Track Proceedings.

[20] Xixun Lin, Chuan Zhou, Jia Wu, Hong Yang, Haibo Wang, Yanan Cao, and
Bin Wang. 2023. Exploratory adversarial attacks on graph neural networks for
semi-supervised node classification. Pattern Recognition 133 (2023), 109042.

[21] Yang Liu, Xiang Ao, Linfeng Dong, Chao Zhang, Jin Wang, and Qing He. 2020.
Spatiotemporal activity modeling via hierarchical cross-modal embedding. IEEE
Transactions on Knowledge and Data Engineering 34, 1 (2020), 462–474.

[22] Yang Liu, Xiang Ao, Fuli Feng, and Qing He. 2022. Ud-gnn: Uncertainty-aware
debiased training on semi-homophilous graphs. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 1131–1140.

[23] Yang Liu, Xiang Ao, Fuli Feng, Yunshan Ma, Kuan Li, Tat-Seng Chua, and Qing
He. 2023. FLOOD: A flexible invariant learning framework for out-of-distribution
generalization on graphs. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 1548–1558.

[24] Zihan Liu, Yun Luo, Lirong Wu, Zicheng Liu, and Stan Z. Li. 2024. Towards
reasonable budget allocation in untargeted graph structure attacks via gradient
debias (NIPS ’22). Red Hook, NY, USA, Article 2028, 12 pages.

[25] Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan Liu, and Maosong Sun.
2020. Onion: A simple and effective defense against textual backdoor attacks.
arXiv preprint arXiv:2011.10369 (2020).

[26] Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan Liu, Yasheng
Wang, and Maosong Sun. 2021. Hidden killer: Invisible textual backdoor attacks
with syntactic trigger. arXiv preprint arXiv:2105.12400 (2021).

[27] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[28] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre
Vandergheynst. 2013. The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular domains.
IEEE signal processing magazine 30, 3 (2013), 83–98.

[29] Lichao Sun, Yingtong Dou, Carl Yang, Kai Zhang, Ji Wang, S Yu Philip, Lifang He,
and Bo Li. 2022. Adversarial attack and defense on graph data: A survey. IEEE
Transactions on Knowledge and Data Engineering 35, 8 (2022), 7693–7711.

[30] Shuchang Tao, Qi Cao, Huawei Shen, Junjie Huang, Yunfan Wu, and Xueqi
Cheng. 2021. Single node injection attack against graph neural networks. In
Proceedings of the 30th ACM International Conference on Information & Knowledge
Management. 1794–1803.

[31] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, Yoshua Bengio, et al. 2017. Graph attention networks. stat 1050, 20 (2017),
10–48550.

[32] Binghui Wang, Minhua Lin, Tianxiang Zhou, Pan Zhou, Ang Li, Meng Pang,
Hai Li, and Yiran Chen. 2024. Efficient, direct, and restricted black-box graph
evasion attacks to any-layer graph neural networks via influence function. In
Proceedings of the 17th ACM International Conference on Web Search and Data
Mining. 693–701.

[33] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861–6871.

[34] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[35] Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. 2021. Graph backdoor. In
30th USENIX Security Symposium (USENIX Security 21). 1523–1540.

[36] He Zhang, Bang Wu, Xiangwen Yang, Chuan Zhou, Shuo Wang, Xingliang Yuan,
and Shirui Pan. 2021. Projective ranking: A transferable evasion attack method on
graph neural networks. In Proceedings of the 30th ACM International Conference
on Information & Knowledge Management. 3617–3621.

[37] Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neural
Networks. In Advances in Neural Information Processing Systems, Vol. 31.

[38] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An end-
to-end deep learning architecture for graph classification. In Proceedings of the
AAAI conference on artificial intelligence, Vol. 32.

[39] Xiang Zhang and Marinka Zitnik. 2020. Gnnguard: Defending graph neural
networks against adversarial attacks. Advances in neural information processing
systems 33 (2020), 9263–9275.

[40] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. 2021. Back-
door attacks to graph neural networks. In Proceedings of the 26th ACM Symposium
on Access Control Models and Technologies. 15–26.

[41] Zhiwei Zhang, Minhua Lin, Enyan Dai, and Suhang Wang. 2024. Rethinking
graph backdoor attacks: A distribution-preserving perspective. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
4386–4397.

[42] Zhiwei Zhang, Minhua Lin, Junjie Xu, ZongyuWu, Enyan Dai, and SuhangWang.
2024. Robustness-Inspired Defense Against Backdoor Attacks on Graph Neural
Networks. arXiv preprint arXiv:2406.09836 (2024).

[43] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2019. Robust graph
convolutional networks against adversarial attacks. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
1399–1407.

[44] Xiaoqian Zhu, Xiang Ao, Zidi Qin, Yanpeng Chang, Yang Liu, Qing He, and
Jianping Li. 2021. Intelligent financial fraud detection practices in post-pandemic
era. The Innovation 2, 4 (2021).

[45] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial
attacks on neural networks for graph data. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining. 2847–2856.

[46] Daniel Zügner, Oliver Borchert, Amir Akbarnejad, and Stephan Günnemann.
2020. Adversarial attacks on graph neural networks: Perturbations and their
patterns. ACM Transactions on Knowledge Discovery from Data (TKDD) 14, 5
(2020), 1–31.

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Yuanhao Ding et al.

A Algorithm
The overall algorithm of SPEAR is outlined in Algorithm 1. The
process begins with parameter initialization in line 1. From lines 2
to 7, we perform candidate selection. Specifically, in lines 2-3, we
pretrain a clean GCN model, 𝑓𝑝 , to identify the poisoned node set,
V𝑝 , as specified by Eq. (8). Once the poisoned nodes are identified,
we modify their labels to 𝑦𝑡 . Line 7 determines which features will
be triggered. To optimize the trigger generator and the poisoned
graph, we employ bi-level optimization from lines 8 to 13, updating
the surrogate model, 𝑓𝑠 , the trigger generator, 𝑓𝑡 , and the poisoned
graph, G𝑃 .

Algorithm 1 Training algorithm of SPEAR
Input: G – training graph; 𝑦𝑡 – target label; Δ𝑃 , Δ𝐷 – attack

budget; 𝛼 , 𝐸 – hyperparameter.
Output: G𝑃 – poisoned graph; 𝜃𝑡 – parameters of trigger gen-

erator.
1: Initialize 𝜃𝑝 , 𝜃𝑡 and 𝜃𝑠 ; Set G𝑃 = G;
2: while not converged do
3: Update 𝜃𝑝 according to Eq. (6);
4: end while
5: Select poisoned nodesV𝑃 according to Eq. (8);
6: Alter labels of nodes inV𝑃 to 𝑦𝑡 ;
7: Select implanting dimension D according to Eq. (11);
8: while not converged do
9: for 𝑒 = 1, 2, . . . , 𝐸 do
10: Update 𝜃𝑠 according to Eq. (17);
11: end for
12: Update 𝜃𝑡 according to Eq. (18);
13: Update G𝑃 according to 𝜃𝑡 ;
14: end while
15: return G𝑃 and 𝜃𝑡 ;

B Baselines Information
• SBA-Samp & SBA-Gen [40]: Two methods inject fixed or gen-
erated subgraph triggers. These methods face challenges in high
ASR and are susceptible to defense mechanisms such as pruning.

• GTA [35]: GTA introduces a trigger generator that tailors triggers
to specific samples, improving attack effectiveness but vulnerable
to several defense mechanisms.

• UGBA [6]: UGBA selects poisoned nodes based on representa-
tiveness and generates triggers that obey the homophily assump-
tion, maintaining high stealth under a limited budget.

• DPGBA [41]: DPGBA improves by ensuring that triggers re-
main within distribution through adversarial learning, further
reducing detectability.

• Prune [6]: Prune removes dissimilar edges to disrupt the effec-
tiveness of backdoor by filtering out suspicious connections.

• OD [41]: OD leverages autoencoders for outlier detection, iden-
tifying and removing out-of-distribution edges to mitigate back-
door attacks.

• RIGBD [42]: RIGBD detects poisoned nodes by leveraging ran-
dom edge dropping and the prediction variance, offering strong
defense while maintaining high clean accuracy.

Table 5: Hyperarameter settings for different models.

Model 𝛼 E Δ𝑃

GCN 0.1 1 0.5
GAT 0.1 1 0.5

GraphSAGE 0.1 1 0.5
GNNGuard 1 2 1
RobustGCN 5 2 1

Prune 1/1/5 2 0.5
OD 5/1/15 3 1

RIGBA 1/1/5 3 1

Table 6: Hyperparameters settings for different datasets.

Dataset 𝑁ℎ 𝛾

Cora 80 0.001
Pubmed 64 0.01

OGB-arxiv 32 0.01

• GCN [15]: A standard GNN widely used for node classification,
serving as a benchmark for graph-based tasks.

• GAT [31]: GAT assigns different attention weights to neigh-
boring nodes, enabling more expressive and flexibility without
requiring prior knowledge of the global graph structure.

• GraphSAGE [12]: GraphSAGE generates inductive node embed-
dings by sampling and aggregating information from local node
neighborhoods.

• RobustGCN [43]: RobustGCN models nodes with Gaussian dis-
tributions and employs a variance-based attention mechanism
to reduce the spread of adversarial attacks through the network.

• GNNGuard [39]: GNNGuard dynamically reweights edges based
on cosine similarity, pruning adversarial connections and improv-
ing the model’s robustness against attacks.

C Detailed Implementation
C.1 Hyperparameters
All hyperparameters are tuned based on the loss and accuracy of
the validation set. For SPEAR, the parameter 𝛼 , which controls
the contribution of the self-similarity loss, is tuned from {0.1, 1,
3, 5, . . . , 15}, and 𝐸, the number of repeated iterations for inner-
optimization, is tuned from {1, 3, 5, 7, 9, 11}. A 2-layer GCN is
deployed as 𝑓𝑝 , and a 2-layer MLP is used as the trigger generator,
both with hidden dimensions set to 32. Another 2-layer GCN is
deployed as the surrogate model, which also acts as the aggregator
providing input for the trigger generator. Its hidden dimension 𝑁ℎ ,
which determines the level of information compression in the input
to the generator, is tuned from {16, 32, 64, 80, 128}. The learning rate
𝛾 for the surrogate and trigger generator is tuned from {0.0001, 0.001,
0.005, 0.01}. The ratio of poisoned nodes Δ𝑃 in training set is tuned
from {0.5, 1}% for experiments in Sec. 4.2.1, with all baseline attack

SPEAR: A Structure-Preserving Manipulation Method for Graph Backdoor Attacks WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Table 7: Performance (ASR (%) | CA (%)) comparison in incom-
plete attribute scenarios. Better performance is underlined.

Dataset Attack 25% 50% 75%

Cora SPEAR 95.20 | 83.33 100.0 | 82.22 100.0 | 61.85
UGBA 99.33 | 81.85 99.63 | 81.48 100.0 | 60.37

Pubmed SPEAR 100.0 | 84.12 100.0 | 84.56 100.0 | 81.13
UGBA 97.57 | 84.42 97.41 | 83.97 98.07 | 81.94

OGB-arxiv SPEAR 97.16 | 66.20 97.61 | 64.24 99.86 | 59.74
UGBA 96.33 | 66.07 97.85 | 64.23 98.49 | 59.60

methods using the same poisoning rate as SPEAR to guarantee a
fair comparison.

The specific choice of hyperparameters is listed in Table 5 and 6.
In Table 5, the values separated by ‘/’ correspond to the parameter
settings for Cora, Pubmed, and OGB-arxiv, respectively.

C.2 Computing infrastructures
We implement the proposed methods with Numpy 1.26.0, PyTorch
2.2.1 and PyTorch Geometric 2.5.1. We conduct the experiments on
a Linux server with an Intel Xeon E5-2680 v4 CPU and a NVIDIA
GeForce RTX 4090 GPU with 24GB memory.

D Adaptability to Limited Attributes
D.1 Incomplete Attributes
In this scenario, we randomly mask out 25%, 50%, or 75% of the
original attributes. The baseline attack method, UGBA, manipulates
all unmasked attributes, while the proposed method, SPEAR, only
perturbs a small fraction of the attributes, with a maximum limit of
𝑚𝑎𝑥 (0.02𝑑, 5), where 𝑑 is the total number of attributes. The results
of these experiments are shown in Table 7.

In this setting, we observe that as the percentage of masked
attributes increases, the ASR of SPEAR improves, while the Clean
Accuracy (CA) declines. This is expected, as the higher the fraction
of poisoned attributes, the more susceptible the predictions become
to manipulation. Both SPEAR and UGBA show strong adaptability,
but SPEAR generally achieves higher ASR in most cases.

D.2 Partially Unmodifiable Attributes
A portion of the attributes are designated as unmodifiable, and the
attacker can only manipulate the remaining modifiable attributes.
We experiment with 50%, 75%, and 95% of attributes being unmodi-
fiable. The results of these experiments are summarized in Table 8.

The results show that when the number of unmodifiable at-
tributes increases, SPEAR exhibits significantly stronger adaptabil-
ity compared to UGBA. UGBA’s performance deteriorates, espe-
cially on datasets with smaller feature sizes (e.g., OGB-arxiv), while
SPEAR maintains consistently high ASR across different unmodi-
fiable attribute rates. This demonstrates the superior efficiency of
SPEAR in utilizing the available attack budget and its robustness
under constrained attribute conditions.

Table 8: Performance (ASR (%) | CA (%)) comparison with
partially unmodifiable attributes. Better performance is un-
derlined.

Dataset Attack 50% 75% 95%

Cora SPEAR 98.52 | 83.70 98.54 | 83.52 95.28 | 83.92
UGBA 96.22 | 83.33 96.42 | 83.96 91.51 | 84.07

Pubmed SPEAR 96.54 | 85.02 96.14 | 84.98 95.56 | 84.79
UGBA 93.48 | 84.93 90.06 | 84.56 72.46 | 84.98

OGB-arxiv SPEAR 97.12 | 66.03 96.28 | 66.45 95.20 | 66.24
UGBA 97.07 | 66.94 87.02 | 66.89 69.55 | 66.89

Table 9: Performance (ASR (%) | CA (%)) comparison with
different surrogate models.

Dataset Defense Sur_GCN Sur_GAT Sur_SAGE

Cora None 98.85 | 83.96 96.31 | 82.96 98.26 | 84.07
Prune 97.78 | 82.66 97.42 | 74.07 95.57 | 78.15
OD 96.31 | 84.07 95.20 | 79.63 98.15 | 82.96

RIGBD 91.56 | 93.33 92.05 | 83.70 93.94 | 84.81

Pubmed None 95.03 | 85.08 94.57 | 84.93 97.95 | 84.93
Prune 96.70 | 85.24 98.02 | 85.34 98.80 | 84.87
OD 92.04 | 85.64 92.34 | 85.29 91.23 | 85.29

RIGBD 95.33 | 84.78 95.84 | 85.24 94.24 | 84.75

OGB-arxiv None 96.95 | 66.91 OOM 92.99 | 66.81
Prune 98.66 | 64.83 OOM 89.61 | 66.92
OD 88.92 | 66.17 OOM 94.24 | 66.74

RIGBD 96.20 | 65.96 OOM 96.51 | 66.81

E Evaluation with Different Surrogate Models
To further investigate the performance of SPEAR, we incorporated
two alternative surrogate models, GraphSAGE and GAT within the
SPEAR framework which are denoted as Sur_SAGE and Sur_GAT,
respectively. The original frameworkwith the GCN surrogatemodel
is referred to as Sur_GCN. We evaluated the performance of SPEAR
with these three surrogate models under different defense scenarios.
The performance results, measured by ASR and CA, are summarized
in Table 9.

The results show that SPEAR consistently achieves high attack
success rates and clean accuracy across all three surrogate mod-
els, demonstrating the robustness of the method across different
surrogate settings. Despite the variation in the surrogate models,
the attack performance remains competitive, indicating that the
proposed framework can effectively handle different types of sur-
rogate models. Upon evaluating the computational complexity and
performance stability across various defense methods, we find that
the GCN surrogate model remains the most suitable choice for our
framework. This conclusion is based on its balance between attack
success and computational efficiency, especially when considering
the challenges posed by different defense strategies.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notions
	2.2 Threat Model
	2.3 Problem Formulation

	3 Methodology
	3.1 Overall Architecture of SPEAR
	3.2 Effective Poisoned Nodes Selection
	3.3 Global Importance-Driven Feature Selection
	3.4 Neighborhood-Aware Trigger Generator

	4 Experiments
	4.1 Experimental Settings
	4.2 Attack Performance
	4.3 Impact of Attack Budget
	4.4 Ablation Study
	4.5 Trade-off between Time and Performance

	5 Related Works
	5.1 Adversarial Attacks against GNNs
	5.2 Backdoor Attacks and Defenses on GNNs

	6 Conclusion
	Acknowledgments
	References
	A Algorithm
	B Baselines Information
	C Detailed Implementation
	C.1 Hyperparameters
	C.2 Computing infrastructures

	D Adaptability to Limited Attributes
	D.1 Incomplete Attributes
	D.2 Partially Unmodifiable Attributes

	E Evaluation with Different Surrogate Models

