
Published as a conference paper at ICLR 2023

REVISITING GRAPH ADVERSARIAL ATTACK AND
DEFENSE FROM A DATA DISTRIBUTION PERSPECTIVE

Kuan Li, Yang Liu, Xiang Ao∗, Qing He
Key Lab of Intelligent Information Processing of Chinese Academy of Sciences
Institute of Computing Technology, Chinese Academy of Sciences
University of Chinese Academy of Sciences
likuan_buaa@163.com, liuyang520ict@gmail.com, {aoxiang, heqing}@ict.ac.cn

ABSTRACT

Recent studies have shown that structural perturbations are significantly effective in
degrading the accuracy of Graph Neural Networks (GNNs) in the semi-supervised
node classification (SSNC) task. However, the reasons for the destructive nature of
gradient-based methods have not been explored in-depth. In this work, we discover
an interesting phenomenon: the adversarial edges are not uniformly distributed on
the graph, and a majority of perturbations are generated around the training nodes
in poisoning attacks. Combined with this phenomenon, we provide an explanation
for the effectiveness of the gradient-based attack method from a data distribution
perspective and revisit both poisoning attack and evasion attack in SSNC. From
this new perspective, we empirically and theoretically discuss some other attack
tendencies. Based on the analysis, we provide nine practical tips on both attack
and defense and meanwhile leverage them to improve existing attack and defense
methods. Moreover, we design a fast attack method and a self-training defense
method, which outperform the state-of-the-art methods and can effectively scale to
large graphs like ogbn-arxiv. We validate our claims through extensive experiments
on four benchmark datasets.

1 INTRODUCTION

Graph Neural Networks (GNNs) have been widely explored in recent years for numerous graph-based
tasks Li et al. (2015); Kipf & Welling (2017); Hamilton et al. (2017); Liu et al. (2021b), primarily
focused on the semi-supervised node classification (SSNC) task Xu et al. (2019b); Veličković et al.
(2017); Huang et al. (2022); Liu et al. (2022). The evidence that GNNs are vulnerable to adversarial
structure perturbations is convincing Dai et al. (2018); Zügner et al. (2018); Zügner & Günnemann
(2019); Wu et al. (2019); Geisler et al. (2021); Zhu et al. (2022b). Attackers can degrade classification
accuracy largely by unnoticeably modifying graph structure. Most attack methods are gradient-
based Chen et al. (2020); Wu et al. (2019); Zügner & Günnemann (2019); Xu et al. (2019a); Geisler
et al. (2021), treating the adjacency matrix as a parameter and modifying it via the gradient of the
attack loss. However, we still lack a general framework to explain their effectiveness.

We posit that the destructive power of gradient-based methods stems from their ability to effectively
increase the distribution shift between training nodes and testing nodes.To illustrate in more detail,
we start with an interesting phenomenon: the malicious modifications generated by gradient-based
methods are not uniformly distributed on the graph. As shown in Fig. 1, most modifications are
around the training nodes (ordered at the top of the adjacency matrix), while the largest part of
the graph, Test-Test, is hardly affected. Specifically, we apply two representative attack method,
MetaAttack Zügner & Günnemann (2019) and PGD Xu et al. (2019a). The data split follows
10%/10%/80% (train/validation/test). Furthermore, we find that only MetaAttack can adaptively
adjust the attack tendency (attack training nodes or testing nodes) according to the size of the training
set, and such adaptivity makes MetaAttack outperform other methods regardless of the data split. It
inspires us to study the effectiveness of attack methods from another perspective, Distribution Shift,
which likewise considers the differences between the training set and the testing set. This begs the

∗Corresponding to Xiang Ao

1

Published as a conference paper at ICLR 2023

Train

Train

Attack Ptb rate Train-Train Train-Test Test-Test

MetaAttack

5% 13 238 2
10% 60 442 3
15% 69 673 17
20% 79 919 15

PGD

5% 70 172 3
10% 122 365 8
15% 162 575 10
20% 241 755 12

Figure 1: Left: The adjacency matrix of Cora attacked by MetaAttack, in which the blue pots are
original edges, and the reds are adversarial edges. The green dotted line is the boundary of training
nodes and testing nodes. Right:The location statistics of adversarial edges on the Cora dataset under
different perturbation rates. Train-Train means the perturbed edge links two nodes from the training
set. Train-Test and Test-Test follow the same rule.

following challenge:

How to formulate the distribution shift in graph adversarial attack scenario?

To answer the above question, in this paper, we first clarify the differences between attack in the
mainstream domain, e.g., image classification, and in SSNC: (1) SSNC is a transductive task in which
attackers have access to both training nodes and testing nodes; (2) Nodes in the graphs have both
features and structural information, while other data types may only contain features, e.g. images have
pixels or text have words. Taking these two differences into account, we provide a formalization of
the distribution shift in graph adversarial attack and theoretically prove that the perturbations around
training nodes enlarge the distribution shift in an effective way. we explore factors that influence the
location of adversarial edges, such as surrogate loss and gradient acquisition.

Using the formulation of the distribution shift, some unexplained phenomena in previous works
become clear. For example, why do gradient-based attack methods significantly outperform the
heuristic homophily-based method, DICE? Why do most modifications are insertions instead of
deletions? We will analyze them from both theoretical and empirical sides.

With the advantage of the above analysis, several practical tips are proposed to improve and instruct
attack and defense on graphs. To validate these tips, we conduct extensive corresponding experiments.
Additionally, we design a fast and straightforward heuristic attack method underpinned by increasing
the distribution shift, and it achieves comparable performance to gradient-based methods and can
effectively scale to large graphs like ogbn-arxiv. We also provide a self-training-based method to
improve the robustness of GNNs1. The codes are available at https://github.com/likuanppd/STRG.

Our main contributions are summarized below:

• We find an interesting phenomenon that perturbations are unevenly distributed on the graph,
and it inspires us to revisit graph adversarial attack from a data distribution perspective and
define the distribution shift in graph attack scenario.

• We explore some unexplained phenomena and provide relevant theoretical proofs from the
view of data distribution. We argue that the effectiveness of the graph attack essentially
comes from increasing the distribution shift, as the fundamental nature of the adversarial
attack.

• We provide some practical tips to instruct both attack and defense on graphs. We conduct
extensive experiments to support our claims and verify the validity of these tricks. The
implementation details and the statistics of the datasets are provided in A.1.

2 RELATED WORK

Many efforts have been made to study various properties of the gradient-based attack algorithms.
GCN-SVD Entezari et al. (2020) discovers that attacks exhibit a specific behavior in the spectrum

1Our focus is to revisit both attack and defense sides from a new view. These two algorithms are natural
byproducts of this work, so we put them in the appendix.

2

https://github.com/likuanppd/STRG

Published as a conference paper at ICLR 2023

of the graph: only high-rank (low-valued) singular components of the graph are affected. Likewise,
Chang et al. (2021) and Chang et al. (2022) also study the robustness of GNNs from the spectral
perspective. Chang et al. (2021) indicates that not all low-frequency filters lick GCNs are robust
to adversarial attacks and proposes GCN-LFR which enhance the robustness of various kinds of
GCN-based models by a general robust co-training paradigm. Meanwhile, many efforts have been
devoted to revealing the various properties of gradient-based attacks. Zügner & Günnemann (2019)
demonstrates that the perturbations tend to increase the heterophily of the graph. Based on it, Zhang
& Zitnik (2020) and Wu et al. (2019) invent GNNGuard and Jaccard, respectively, to prune the edges
that link two dissimilar nodes. Geisler et al. (2020) and Chen et al. (2021) study the robustness
of GNNs from the breakdown point perspective and propose more robust aggregation approaches.
Xu et al. (2022) introduce a mutual information-based measure to quantify the robustness of graph
encoders on the representation space. Zhan & Pei (2022) is another work that finds the uneven
distribution of perturbations, mainly focusing on the attacking side and proposing a black-box attack
method. Different from them, we prefer to study the mechanism behind it, including the reasons for
its generation and the impact on the effectiveness of the attack methods. We fomulate the distribution
shift in graph adversarial attack and leverage it to analyze other tendencies of gradient-based attack
methods, which can provide some theoretical guidance and help us understand the robustness and
vulnerability of GNNs. Meanwhile, several tips are proposed, covering all the structure attack aspects,
and most of them are not mentioned in Zhan & Pei (2022).

3 PRELIMINARIES

Notations. Let G = {V, E} denote an undirected, unweighted graph with N nodes, where V and E
(without self-loops) are the sets of nodes and edges, respectively. The topology of the graph can also
be represented as a symmetric adjacency matrix A ∈ {0, 1}N×N , in which Aij = 1 denotes that
node vi connects node vj , otherwise Aij = 0. The original features of all nodes can be summarized
as a matrix X ∈ RN×d. The first-order neighborhood of node vi is denoted as Ni, including node vi
itself. Moreover, the labels of all nodes are denoted as y. Each node is associated with a label yi ∈ C,
where C = {c1, c2, ..., cK}. We use fθ(A,X) to denote a GNN, and θ refers to the parameters.

SSNC. In this paper, we study the robustness of GNNs on the semi-supervised node classification
(SSNC) task, which can be formulated as this: Given a graph G, the node features X, and a subset of
node labels yL ⊂ y, the goal is to learn a function: V → C which maps the nodes to the label set so
that we can predict labels of unlabeled nodes. The ground truth labels of unlabeled nodes are denoted
as yU , and the corresponding node set is VU .

Graph Adversarial Attacks In this paper, we explore the robustness of GNNs on SSNC in gray-
box non-targeted attack on graph structure. Under this setting, the attacker possesses the same
data information as the defender, but the defense model and its trained weights are unknown. The
adversarial attack can be divided into two categories, namely poisoning (training time) attack and
evasion (testing time) attack Zügner et al. (2018). The attacker aims to find an optimal perturbated
graph Ĝ that degrades the overall performance of the classifier as much as possible, which can be
formulated as Zügner & Günnemann (2019); Geisler et al. (2021):

argmin
Â∈Φ(A)

Latk(fθ∗(Â,X),y), (1)

where Â is the adjacency matrix of the purturbed graph Ĝ, and Φ(A) is a set of adjacency matrix that

fits the unnoticeable constraint:
∥Â−A∥

0

∥A∥0
≤ ∆, in which ∆ is the maximum perturbation rate. Latk

is often −L(fθ∗(Â,X)U , ŷU) or −L(fθ∗(Â,X)L,yL), where ŷU is the pseudo-label of unlabeled
nodes predicted by the surrogate classifier. For notation simplicity, we call them Lself and Ltrain,
respectively. The θ∗ refers to the parameters of the surrogate GNN, which is different in evasion and
poisoning attack. It is fixed and trained on the clean graph in evasion attack, but it can be repeatedly
retrained as the graph is gradually contaminated in poisoning attack.

The key to the gradient-based attack methods is to treat the adjacency matrix as a parameter and
modify the graph structure via the gradient of the attack loss ∇ALatk.

3

Published as a conference paper at ICLR 2023

4 RETHINKING GRAPH ADVERSARIAL ATTACKS

4.1 THE LOCATION OF ADVERSARIAL EDGES

To better understand which part of the graph is perturbed, we propose an intention score (IS) to
quantify how the adversarial edges are distributed on the graph. Since GNN models are permutation
invariant Zou et al. (2021), we can adjust the node index and then split the adjacency matrix into the
following form:

A =

[
A1 A2

A⊤
2 A3

]
, A1 ∈ RN1×N1 , A2 ∈ RN1×N2 , A3 ∈ RN2×N2 , (2)

where A1 is an matrix of the edges that connects two training nodes, A2 is a matrix that represents
edges between a training node and a testing node, and A3 is a matrix where the element denotes an
edge between two testing nodes. N1 and N2 are the numbers of the nodes in the training set and
testing set.

IS can describe in which part of the adjacency matrix (A1, A2, or A3) the attack algorithm prefers
to generate adversarial edges. It is be formulated as:

πi =

∣∣∣Ẽi∣∣∣∣∣∣Ẽ∣∣∣ , λi =
|Ei|
|E|

, ISi =
πi

λi
, i = 1, 2, 3 (3)

where E is the original edge set, Ẽ denotes the edges inserted or deleted by the attack model, and i
denotes the part of the adjacency matrix. IS can demonstrate the density of the perturbations located
in the adjacency matrix (see Table 1, Table 4, and Fig. 5)

Table 1 shows the results on dataset Cora attacked by two poisoning method, MetaAttack and PGD,
under different data split. MetaAttack will adaptively adjust the attack tendency according to the size
of the training set. When the training size is small, the algorithm tends to modify the local structure
around training nodes. The IS3 increases as the training set becomes larger, meaning that adversarial
edges are more likely to be generated around testing nodes. When the size of the training set is 50%,
all the IS are close to 1, and meanwhile the adversarial edges are nearly uniformly distributed on
the graph. More results of other attack methods and on more datasets can be seen in Table 4 in the
appendix A.2.

We find that only MetaAttack has such adaptivity, and it make MetaAttack extremely effective in
poisoning attack. Other representative gradient-based attack methods, like PGD and FGSM, will
always focus on modifying the local structure of the training nodes and only attack the training nodes
regardless of the size of the training set. This adaptivity essentially differentiates between training and
testing nodes when generating attacks. It motivates us to study this problem from another perspective
that likewise considers the differences between the training and testing sets–Distribution Shift.

Table 1: The IS on Cora dataset under 10% perturbation rate.

Training set
MetaAttack PGD

Train-Train Train-Test Test-Test Acc Train-Train Train-Test Test-Test Acc Clean
(IS1) (IS2) (IS3) (IS1) (IS2) (IS3)

10% 11.881 4.862 0.007 71.62 22.178 4.279 0.002 77.92 83.56
20% 4.200 2.513 0.042 80.35 6.832 2.234 0.009 82.32 85.67
30% 2.042 1.605 0.290 81.27 4.444 1.414 0.008 84.56 86.99
40% 1.762 1.136 0.546 81.54 3.057 1.056 0.000 86.23 87.01
50% 0.798 1.150 0.901 83.05 2.107 0.931 0.008 86.91 87.22
60% 0.642 1.182 1.260 83.11 1.711 0.738 0.000 88.03 88.04
70% 0.625 1.299 1.625 81.92 1.519 0.585 0.000 89.55 89.98
80% 0.383 1.933 3.409 80.46 1.160 0.755 0.001 88.88 88.87
90% 0.364 3.426 8.893 79.38 1.107 0.473 0.000 93.54 93.69

4.2 DISTRIBUTION SHIFT IN GRAPH ATTACKS

Machine learning models cannot perform well when the training distribution is far from the testing
distribution Wiles et al. (2021). Intuitively, the smaller the training set, the easier the training

4

Published as a conference paper at ICLR 2023

Li KuanLi Kuan

1

Training set

Training set

Testing set
predictfit

fit predict

Poison

Evasion

Perturb

fit

predict

Perturbed Data
Clean Data

Model

(a) Image Classification (b) Node Classification

Model

Model

Testing set

Testing set
Testing set

Figure 2: (a): The training set and the testing set are separated in inductive learning under full
supervision. For poisoning attack, attackers perturb the training set to fool the classifier. Then the
biased model cannot precisely predict the testing set. For evasion attack, the model trained on clean
data will be tested on the perturbed data. (b) In SSNC, training nodes and testing nodes co-exist in
the graph. Whether it is poisoning attack or evasion attack, the attackers have access to all nodes.

distribution is to be perturbed. The destructive power of these gradient-based methods may stem
from the fact that they effectively increase the distribution shift. The first thing we need to do is to
formulate the distribution shift in graph adversarial attack.

Unlike attacks in other domain, like image classification, formulating the distribution shift in SSNC
should consider the structural information. We assume all the node features are sampled from p(x|y)
amd define a community feature to take structural information into account: x̃i =

1
|Ni|

∑
j∈Ni

xj

and assume the community feature of arbitrary node i follows a distribution:
1

|Ni|
∑
j∈Ni

xj ∼ p(x̃|y). (4)

The first-order neighborhood plays the most important role in structure information, so we do not
consider higher-order here. All the community features and corresponding labels can be viewed as
being sampled from the joint distribution p(x̃, y) on clean graphs. In graph adversarial attack, there
are three key distributions–ptrain(x̃, y), ptest(x̃, y), and the classifier pθ(y|x̃). In the clean graphs,
we assume that ptrain(x̃, y) and ptest(x̃, y) are the same as the true distribution p(x̃, y). In the
perturbed graphs, we consider attacking the structures as perturbing the corresponding distribution.
Concretely, we treat the structural changes to the training and test nodes as if these nodes were
sampled from biased ptrain and ptest.

In image classification, the attackers degrade the performance of the classifier by perturbing ptrain
or ptest. When implementing the poisoning attack, the ptrain will be perturbed, and the classifier
will fit a biased distribution so that it will fail to precisely predict the unbiased images sampled from
ptest. In evasion attack, the attackers have no access to the training set, so they perturb the testing
images–this can be viewed as predicting on a biased distribution ptest with an unbiased classifier.

However, SSNC is semi-supervised. Attackers can modify the entire graph structure, including the
training and test nodes. The difference between SSNC and image classification is shown in Fig. 2.
Unlike inductive learning under full supervision scenario, ptrain and ptest can be simultaneously
perturbed.

Awareness of this difference is critical. For example, in the image poisoning attack, attackers can
only perturb the training data to bias the model. In contrast, in the graph poisoning attack, attackers
can perturb the testing data to make an unbiased model test on the biased data.

After perturbing, ptrain, and ptest might be different to the true distribution p(x̃, y) and this
discrepancy may result in a distribution shift. By a simple factorization, we can write:

p(x̃, y) = p(y)p(x̃|y) (5)

Labels are not flipped in the setting of structure attack, so we assume p(y) is shared across all
distributions. The distribution shift arises when ptrain(x̃|y) and ptest(x̃|y) differ due to the structural
perturbations, so we difine the distribution shift in graph adversarial attack as:

1

|C|
∑
y∈C

DKL(ptrain(x̃|y = ci), ptest(x̃|y = ci)) (6)

5

Published as a conference paper at ICLR 2023

Essentially the attack is to increase the distribution shift, but specifically to perturb ptrain(x̃|y) or
ptest(x̃|y) in the poisoning attack and evasion attack is different.

For evasion attack, perturbing ptrain is nearly invalid. The classifier is already trained, which can
be viewed as an unbiased model. It is unwise to waste limited modifications on the training nodes.
For poisoning attack, the implications of attacking the training and testing sets are different from a
distribution perspective. Attacking the training set is to perturb the ptrain(x̃|y) in such a way that
the classifier pθ(y|x̃) will fit a biased distribution. On the other hand, perturbing the testing set in
poisoning attack is similar to the case in evasion attack. The model is well trained on clean data and
tested on a biased distribution. Our empirical results demonstrate that gradient-based methods tend to
perturb the local structure of training nodes if the size of the training set is small. We speculate that it
is because in SSNC, the smaller the training set, the more effective it is to attack the structure of the
training nodes (Theorem 4.1, we give the proof in Appendix A.3).

Assumption 4.1. We consider a graph G, where each node i has feature xi ∈ Rd and label
yi ∈ {0, 1}. We assume that (1) G is k-regular; (2) The feature of arbitrary node i is sampled from
the normal distribution N (µyi

,Λ) associated with its label and independent to other nodes. Λ is a
diagonal matrix and same for class 0 and 1; (3) The graph is a homophilous graph. The homophily
ratio is h, which means each node connects kh nodes with the same label, and 0.5 ≤ h ≤ 1.

Theorem 4.1. Consider a graph G, which follows Assumptions 4.1. The perturbation rate is ∆, and
the training size is t. The smaller the size of the training set, the larger the distribution shift caused by
uniformly inserting heterophily edges (edges link two nodes with different labels) into the training set.

MetaAttack’s success in poisoning attack (as shown in Table 4) can be accounted for the same
reason. It can adaptively adjust IS so that it attacks the training set when the training size is small but
changes to attack the testing set as the size of the training set increases. Notably, the performance
of MetaAttack shows a decreasing and then increasing trend as the training set increases, so such a
strategy can effectively enlarge the distribution shift.

4.3 IMPACT OF SURROGATE LOSS AND GRADIENT COMPUTATION

When implementing the attack algorithms, two factors influence the distribution of adversarial
edges: (1) surrogate loss and (2) how the gradient is obtained. Ma et al. (2020); Geisler et al.
(2021) have studied the impact of various surrogate loss on the attack performance, such as Cross-
Entropy (CE), Carlini-Wagner (CW), Non-targeted CE, etc. Different from them, we are concerned
with the question of which nodes are used to calculate the loss. Lself = L(fθ∗(Â,X)U , ŷU) and
Ltrain = L(fθ∗(Â,X)L,yL) are two widely used loss. We find that they lead to different attack
tendencies. Attack methods with Ltrain and Lself will focus on the training and testing nodes,
respectively. In addition, MetaAttack is a special case due to its ability to adjust the location of
adversarial edges adaptively. We find that such adaptability comes from its way of calculating the
gradient, i.e., meta gradient. For more details, see A.4.

5 EXPLANATION OF PHENOMENA IN GRAPH ATTACKS

With the advantage of the new perspective and the formulation of distribution shift, we could introduce
some other phenomena in graph attacks and explain them.

5.1 TEND TO INSERT BUT NOT DELETE

Previous work shows that gradient-based attack methods tend to insert but not delete edges Zügner &
Günnemann (2019); Lin et al. (2020); Xu et al. (2019a). For example, roughly 80% of perturbations
in MetaAttack are insertions, and as expected by the homophily assumption, edges inserted connect
nodes from different classes in most cases. Why is insertion more destructive? We argue that insertion
can cause a larger distribution shift and provide a theoretical justification (Theorem 5.1).

Theorem 5.1. Consider a graph G, which follows Assumptions 4.1. If ∆k
t(k+1) ≤ 1 − ln 2 and

(2h− 1)t > ∆, inserting heterophily edges in the training set will cause a larger distribution shift
than deleting homophily edges.

6

Published as a conference paper at ICLR 2023

We provide the proof in Appendix A.5. Since adversarial attacks aim at performing unnoticeable
perturbations, the perturbation rate ∆ is often very small, and in homophilous graphs, h is often
much larger than 0.5 in homophilous graphs. Therefore, the assumption ∆k

t(k+1) ≤ 1 − ln 2 and
(2h− 1)t > ∆ could be generally satisfied. To ensure this tendency is not caused by the sparsity of
the graph, we build a dense synthetic graph and attack it by MetaAttack in Table 10 in Appendix A.5.
The results hold the same conclusion that attack methods tend to insert but not delete.

5.2 GRADIENT-BASED METHODS OUTPERFORM HOMOPHILY-BASED METHODS

Under the homophily assumption McPherson et al. (2001), i.e., connected nodes are more likely
to have similar features and labels; one mainstream opinion is that attack methods tend to increase
the heterophily of the graph Zügner & Günnemann (2019); Wu et al. (2019); Zhu et al. (2021a).
The homophily assumption ignores the location of the perturbations, so it cannot account for the
superiority of the gradient-based approaches over DICE Waniek et al. (2018), a heuristic method that
directly increases the heterophily of the graph by randomly connecting nodes from different classes
and disconnecting nodes from the same class. However, this is not surprising from a distribution
perspective.

On the one hand, DICE randomly attacks the entire graph, resulting in synchronous perturbation
of ptrain and ptest, while the gradient-based methods concentrate on attacking the training set.
According to Theorem 4.1, attacking the smaller part is more effective to increase the distribution
shift, so DICE performs worse. On the other hand, DICE algorithm perturbs both training and testing
nodes using a similar rule, wherein heterophily is increased. Consequently, ptrain and ptest may
exhibit a biased shift in the same direction, leading to a reduction in distribution shift rather than an
increase. We speculate that attack methods might be more destructive if they mainly perturb one of
ptrain and ptrain. To support this, We turn the Train-Test perturbations generated by MetaAttack into
direct edges. Fig. 3 shows the results and demonstrates two critical points. First, Directed→Train
outperforms the vanilla MetaAttack, indicating that simultaneously perturbing ptrain and ptest is
worse than primarily perturb ptrain, indicating that perturbing ptrain and ptest might be biased in the
same direction. Second, Direct→Test is much weaker than Direct→Train. That is to say, what makes
MetaAttack so destructive is the perturbations to the smaller part, training nodes.

0 5 10 15 20
Perturbation Rate (%)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
cc

ur
ac

y

MetaAttack
Directed Train
Directed Test

(a) Cora

0 5 10 15 20
Perturbation Rate (%)

0.50

0.55

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

MetaAttack
Directed Train
Directed Test

(b) Citeseer

Figure 3: The performance of GCN attacked by MetaAttack and two variants. Directed→Train
variant prevented testing nodes from aggregating information from training nodes through adversarial
edges in Train-Test, while Directed→Test is on the contrary. The data split follows 10%/ 10%/
80/%(train/ val/test).

5.3 HIGH-DEGREE NODES

High-degree nodes are special. First, attack algorithms often avoid modifying the local structure
around high-degree nodes Zügner & Günnemann (2019). The more neighbors a node has, the
more stable its community feature is. Attacking them will make less change to the distribution.
Additionally, high-degree nodes are naturally high-density data (see A.6). High-density data possess
two important properties: (1) They are easier to be classified correctly. (2) They are reliable neighbors
to other nodes because they are located in high-density areas of the true distribution and are not
attacked. We can leverage them to improve the robust GNNs (Table 11). For example, trust them
more (for more details, see A.6).

7

Published as a conference paper at ICLR 2023

6 PRACTICAL TIPS

With all the observation and analysis, we put forward several concrete tips to improve attack and
defense methods.

6.1 POISONING ATTACK

Tip 1: It is better to focus on attacking the smaller part. For poisoning attack, the performance of
GNNs can be degrade by perturbing ptrain or ptest. According to Theorem 4.1, the smaller the size
of the data set is, the greater the distribution is changed by injecting a fixed number of perturbations.
MetaAttack is a good example of this tip, in which the perturbations are generated according to the
size of the training set. We improve DICE and random perturbations (Random) along these lines and
compare them to the vanilla version in Fig. 4. For Cora, we focus the attack on the training nodes.
As the public split on ogbn-arxiv is approximately 54%/17%/29% (train/val/test), we conduct the
modifications around the testing nodes. We significantly improve the performance of both DICE and
Random. The improvement is more remarkable in ogbn-arxiv. We conclude that such a strategy can
be well-applied to large-scale graphs.

0 5 10 15 20
Perturbation Rate (%)

0.70

0.75

0.80

0.85

A
cc

ur
ac

y

DICE
DICEimp
Ran
Ranimp

(a) Cora

0 5 10 15 20
Perturbation Rate (%)

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

DICE
DICEimp
Ran
Ranimp

(b) Citeseer

0 5 10 15 20
Perturbation Rate (%)

0.50

0.55

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

DICE
DICEimp
Ran
Ranimp

(c) ogbn-arxiv

Figure 4: Attacking GCN on Cora, Citeseer and ogbn-arxiv where the DICEimp and Ranimp

denote variants of DICE and Random that attack the smaller part of the graph.

Tip 2: Meta gradient is powerful. According to the comparison between MetaAttack and other
variants, we conclude that meta gradient is a convenient tool in poisoning attack. Regardless of
how the data set is split, meta gradient can help the model adaptively adjust the distribution of
perturbations to enlarge the distribution shift effectively.

Tip 3: Directed attack can outperform undirected attack. The results of Fig. 3 indicate that an
adversarial edge can affect the aggregation of two end nodes, but only one of them may contribute to
the accuracy decrease. It also suggests that perturbing both ptrain and ptest may not be a good idea
as ptrain and ptest might be skewed in the same direction, failing to increase the distribution shift
and, consequently, failing the attack.

6.1.1 A HEURISTIC ATTACK ALGORITHM

Considering all the properties of the gradient-based attacks from the data distribution perspective,
we propose a simple heuristic poisoning attack algorithm that can achieve comparable performance
and scale to large graphs. We provide the overall training algorithm, performance, and the runtime
comparisons in A.7. Its core idea is to perturb the more easily perturbed distribution in ptrain and
ptest to enlarge the distribution shift.

6.2 EVASION ATTACK

Tip 4: Do not waste the limited bullets on the training nodes. The classifier is already trained in
evasion attack. In other words, pθ(y|x̃) is fixed, while the only effect of attacking the training set is
to bias the model. Thus, attackers should avoid modifying the structures of training nodes, especially
the edges in the Train-Train area. According to Table 5 and Table 7, Lself should be eschewed when
meta-gradients are not used.

8

Published as a conference paper at ICLR 2023

Tip 5: The evasion attack is unlikely to cause higher performance degradation than the
poisoning. Essentially, evasion attacks have a smaller effective range than poisoning attacks.
Attackers can perform poisoning attack in an evasion form. As we mentioned before, only
modifications around the testing nodes can degrade the performance, so one can make exactly
the same perturbations to the test nodes when carrying out the poisoning attack. In this way, the
model will be trained on nearly clean data and tested on contaminated data. In short, poisoning attack
can at least completely replicate evasion attack.

6.3 DEFENSE

Tip 6: Defend the vulnerable part of the graph. To defend against graph adversarial attacks, many
studies have been proposed around the central concept of Graph Structure Learning (GSL) Li et al.
(2022); Wu et al. (2019); Zhang & Zitnik (2020); Jin et al. (2020); Zhu et al. (2021b), which aims to
optimize the perturbed structure. An attacker can achieve good results by attacking distributions that
can be easily perturbed. Likewise, the defender can mainly optimize the corresponding structures.
Jaccard and GNNGuard Zhang & Zitnik (2020) are two representative GSL methods that refine the
graph structure via the similarity of the node features. In Table 2, we present the experimental results
for vanilla Jaccard and GNNGuard and the results if they only refine the structure of the training
set. The improvement implies that the modifications made by vanilla Jaccard and GNNGuard on the
testing structure are helpless.

Table 2: Adversarial accuracy(%) on Cora and Citeseer
attacked by MetaAttack (stronger is bold). The asterisk
indicates that the GSL methods only optimize the local
structure of the traning nodes.

Datasets Ptb rate GCN Jaccard(*) GNNGuard(*)

Cora

0% 83.56 81.79(83.01) 78.52(82.59)
5% 76.36 80.23(82.03) 77.96(81.17)

10% 71.62 74.65(77.51) 74.86(78.53)
15% 66.37 74.29(76.51) 74.15(77.21)
20% 60.31 73.11(74.60) 72.03(75.88)

Citeseer

0% 74.63 73.64(74.58) 70.07(74.28)
5% 71.13 71.15(72.23) 69.43(72.34)

10% 67.49 69.85(70.65) 67.89(71.70)
15% 61.59 67.50(68.86) 69.14(70.59)
20% 56.26 67.01(67.66) 69.20(70.36)

Tip 7: The high-degree nodes can help a
lot. If the true distribution is like the normal
distribution with the highest probability
density located around the mean, the mean
aggregation can reduce the variance of the
center nodes. That is to say, high-degree
nodes are high-density data and trustworthy.
We provide an example of leveraging them
to enhance the robustness of GNN in Table
11.

Tip 8: We can improve the robustness by
decreasing the distribution shift. Once
we know that the effectiveness of the
attack algorithm stems from increasing
the distribution shift, we can enhance
the robustness by directly eliminating the
inconsistency between the training set and
the testing set. Based on this, we design a robust GNN STRG in Appendix A.8, which outperforms
the SOTA methods. STRG leverages the local structures of testing nodes and pseudo-labels to train a
GCN; in this case, ptrain and ptest can be regarded as almost the same.

6.4 FOR DATASETS

Tip 9: Data split is the non-negligible part of graph adversarial attack. It is hard to maliciously
manipulate the prediction made by GNNs without the data split. Meanwhile, the data split significantly
affects the evaluation of attack and defense methods’ effectiveness. We provide the details in A.9.

7 CONCLUSION

To better understand attacks on graphs, we revisit graph adversarial attack from a data distribution
perspective and formulate the distribution shift in SSNC. Based on this, we argue that the tendencies of
gradient-based methods and their destructive power essentially comes from increasing the distribution
shift. We put forward several practical tips underpinned by what we found and provide some uses of
the tips. Additionally, we give some open research ideas and hope they can spur research in this area.

9

Published as a conference paper at ICLR 2023

8 REPRODUCIBILITY STATEMENT

The two proposed algorithms are not our focus in this work, and the key to their success is the
thinkings behind them but not a technical novelty. They are both easy but effective. All the details
are mentioned in the pseudo-code in Algorithm 1 and Algorithm 2, and the codes are provided at
https://github.com/likuanppd/STRG. For other baselines, we provide the implementation details in
Appendix A.1.

9 ETHIC STATEMENT

The robustness of GNNs has become an emerging research problem, especially for security-critical
domains, e.g., credit scoring or fraud detection. For instance, in graph fraud transaction detection,
fraudsters can conceal themselves by deliberately dealing with common users, which may generate
adversarial edges. In this work, we provide a new perspective on studying the robustness of graph
models. A better understanding of the attack methods and the structural vulnerability of GNNs can
help us improve the security level in these domains. Meanwhile, although we offer examples of how
to leverage the tips, most of them can be further explored and used in more sophisticated ways. In
conclusion, we think this work will not pose a security risk and can positively affect research in this
area.

10 ACKNOWLEDGEMENT

The research work supported by National Key R&D Plan No. 2022YFC3303302, the National Natural
Science Foundation of China under Grant No. 61976204. Xiang Ao is also supported by the Project
of Youth Innovation Promotion Association CAS and Beijing Nova Program Z201100006820062.

REFERENCES

Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us election: divided they
blog. In Proceedings of the 3rd international workshop on Link discovery, pp. 36–43, 2005.

Heng Chang, Yu Rong, Tingyang Xu, Yatao Bian, Shiji Zhou, Xin Wang, Junzhou Huang, and
Wenwu Zhu. Not all low-pass filters are robust in graph convolutional networks. Advances in
Neural Information Processing Systems, 34:25058–25071, 2021.

Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng Cui, Xin Wang, Wenwu
Zhu, and Junzhou Huang. Adversarial attack framework on graph embedding models with limited
knowledge. IEEE Transactions on Knowledge and Data Engineering, 2022.

Jinyin Chen, Yixian Chen, Haibin Zheng, Shijing Shen, Shanqing Yu, Dan Zhang, and Qi Xuan. Mga:
momentum gradient attack on network. IEEE Transactions on Computational Social Systems, 8
(1):99–109, 2020.

Liang Chen, Jintang Li, Qibiao Peng, Yang Liu, Zibin Zheng, and Carl Yang. Understanding structural
vulnerability in graph convolutional networks. arXiv preprint arXiv:2108.06280, 2021.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on
graph structured data. In International conference on machine learning, pp. 1115–1124. PMLR,
2018.

Negin Entezari, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos E Papalexakis. All you
need is low (rank) defending against adversarial attacks on graphs. In Proceedings of the 13th
International Conference on Web Search and Data Mining, pp. 169–177, 2020.

Simon Geisler, Daniel Zügner, and Stephan Günnemann. Reliable graph neural networks via robust
aggregation. In NeurIPS, 2020.

Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan
Günnemann. Robustness of graph neural networks at scale. In NeurIPS, 2021.

10

https://github.com/likuanppd/STRG

Published as a conference paper at ICLR 2023

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Proceedings of the 31st International Conference on Neural Information Processing Systems,
pp. 1025–1035, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Mengda Huang, Yang Liu, Xiang Ao, Kuan Li, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing
He. Auc-oriented graph neural network for fraud detection. In Proceedings of the ACM Web
Conference 2022, pp. 1311–1321, 2022.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 66–74, 2020.

Wei Jin, Tyler Derr, Yiqi Wang, Yao Ma, Zitao Liu, and Jiliang Tang. Node similarity preserving
graph convolutional networks. In Proceedings of the 14th ACM International Conference on Web
Search and Data Mining, pp. 148–156, 2021.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Kuan Li, Yang Liu, Xiang Ao, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He. Reliable
representations make a stronger defender: Unsupervised structure refinement for robust gnn. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
925–935, 2022.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Thirty-Second AAAI conference on artificial intelligence, 2018.

Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. Deeprobust: A pytorch library for adversarial attacks
and defenses. arXiv preprint arXiv:2005.06149, 2020.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Xixun Lin, Chuan Zhou, Hong Yang, Jia Wu, Haibo Wang, Yanan Cao, and Bin Wang. Exploratory
adversarial attacks on graph neural networks. In ICDM, 2020.

Xiaorui Liu, Wei Jin, Yao Ma, Yaxin Li, Hua Liu, Yiqi Wang, Ming Yan, and Jiliang Tang. Elastic
graph neural networks. In International Conference on Machine Learning, pp. 6837–6849. PMLR,
2021a.

Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He. Pick and
choose: A gnn-based imbalanced learning approach for fraud detection. In Proceedings of the Web
Conference 2021, pp. 3168–3177, 2021b.

Yang Liu, Xiang Ao, Fuli Feng, and Qing He. Ud-gnn: Uncertainty-aware debiased training on
semi-homophilous graphs. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 1131–1140, 2022.

Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. Towards more practical adversarial attacks on graph
neural networks. In NeurIPS, 2020.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415–444, 2001.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

11

Published as a conference paper at ICLR 2023

Marcin Waniek, Tomasz P Michalak, Michael J Wooldridge, and Talal Rahwan. Hiding individuals
and communities in a social network. Nature Human Behaviour, 2(2):139–147, 2018.

Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre Alvise-Rebuffi, Ira Ktena, Taylan Cemgil,
et al. A fine-grained analysis on distribution shift. arXiv preprint arXiv:2110.11328, 2021.

Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adversarial
examples on graph data: Deep insights into attack and defense. arXiv preprint arXiv:1903.01610,
2019.

Jiarong Xu, Yang Yang, Junru Chen, Xin Jiang, Chunping Wang, Jiangang Lu, and Yizhou Sun.
Unsupervised adversarially-robust representation learning on graphs. In AAAI, 2022.

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin.
Topology attack and defense for graph neural networks: An optimization perspective. arXiv
preprint arXiv:1906.04214, 2019a.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019b.

Haoxi Zhan and Xiaobing Pei. Dealing with the unevenness: deeper insights in graph-based attack
and defense. Machine Learning, pp. 1–33, 2022.

Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against adversarial
attacks. arXiv preprint arXiv:2006.08149, 2020.

Jiong Zhu, Junchen Jin, Donald Loveland, Michael T Schaub, and Danai Koutra. On the relationship
between heterophily and robustness of graph neural networks. arXiv preprint arXiv:2106.07767,
2021a.

Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu, Shu Wu, and Liang Wang. Deep graph structure
learning for robust representations: A survey. arXiv preprint arXiv:2103.03036, 2021b.

Yao Zhu, Jiacheng Sun, and Zhenguo Li. Rethinking adversarial transferability from a data distribution
perspective. In ICLR, 2022a.

Yulin Zhu, Yuni Lai, Kaifa Zhao, Xiapu Luo, Mingquan Yuan, Jian Ren, and Kai Zhou.
Binarizedattack: Structural poisoning attacks to graph-based anomaly detection. In ICDE, 2022b.

Xu Zou, Qinkai Zheng, Yuxiao Dong, Xinyu Guan, Evgeny Kharlamov, Jialiang Lu, and Jie Tang.
Tdgia: Effective injection attacks on graph neural networks. In KDD, 2021.

Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. In International Conference on Learning Representations (ICLR), 2019.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2847–2856, 2018.

A APPENDIX

A.1 IMPLEMENTATION DETAILS

We conduct our experiments on four benchmark datasets including Cora, Citeseer Sen et al. (2008),
Polblogs Adamic & Glance (2005), and one large-scale citation graph ogbn-arxiv Hu et al. (2020).
All the experiments For Cora, Citeseer, and Polblogs, the data split follows 10%/10%/80% if not
specified. For the ogbn-arxiv we use the public split. Following Zügner et al. (2018); Jin et al. (2020),
for Cora, Polblogs, and Citeseer, we only consider the largest connected component (LCC). The
statistics are listed in Table 3. There are no features available in Polblogs. Following Jin et al. (2020);
Liu et al. (2021a) we set the feature matrix to be a n× n identity matrix.

12

Published as a conference paper at ICLR 2023

Table 3: Dataset statistics.

Datasets NLCC ELCC Classes Features

Cora 2,485 5,069 7 1,433
Citeseer 2,110 3,668 6 3,703
Polblogs 1,222 16,714 2 /

ogbn-arxiv 169,343 1,166,243 40 128

We use DeepRobust, an adversarial attack repository Li et al. (2020), to implement MetaAttack Zügner
& Günnemann (2019), PGD Xu et al. (2019a), DICE Waniek et al. (2018), Jaccard Wu et al. (2019),
SimpGCN Jin et al. (2021) and ProGNN Jin et al. (2020). We perform FGSM according to Dai et al.
(2018). STABLE Li et al. (2022), GNNGuard, and Elastic Liu et al. (2021a) are implemented with
the code provided by the authors.

All the hyper-parameters are tuned based on the loss and accuracy of the validation set. For Jaccard,
the Jaccard Similarity threshold are tuned from {0.01, 0.02, 0.03, 0.04, 0.05}. For GNNGuard,
ProGNN, SimpGCN, and Elastic, we use the default hyper-parameter settings in the authors’
implementation.

A.2 THE DISTRUBION OF ADVERSARIAL EDGES

Table 4 shows the distribution of adversarial edges on the graph, attacked by MetaAttack, PGD, and
FGSM Dai et al. (2018). Only MetaAttack can adjust the distribution of the perturbations according
to the size of the training set. Specifically, it consistently generates perturbations around the smaller
one in the training set and the testing set. PGD and FGSM always focus on attacking training nodes,
resulting in poor performance when the training set size becomes large.

Fig. 5 is the visualization of the adjacency matrices of Cora and Citeseer. Compared with the results
in Table 4 and Table 1, we can see that IS can reflect the density of perturbations in each area of the
adjacency matrix. MetaAttack adjust such density according to the size of training set. It focuses on
attacking the smaller of the training set and the testing set, and the perturbations are nearly uniformly
distributed when the training size is 0.5. On the contrary, PGD and FGSM consistently attacks the
training nodes regardless of the data split. Consequently, MetaAttack can easily fool GCN no matter
how large is the training set, while PGD failed when the training size increases.

Zhu et al. (2021a) shows that MetaAttack fails on evasion attack with a 10%/10%/80% data split,
and it is consistent with our discovery. When the training set is small, such adaptivity will make
MetaAttack focus on modifying the local structure around the training set. In the setting of evasion
attack, the model is already trained on unbiased data, so testing on unchanged data does not cause
worse performance. For example, when the training size is 10%, λ3 ≈ 0.9 × 0.9 = 0.81 and
IS3 = 0.007, meaning that the Test-Test is the largest part of the graph, but most of the local structure
around testing nodes is not malicious modified.

Table 4: The IS of MetaAttack, PGD, and FGSM under 10% perturbation rate. The Acc indicates
the adversarial accuracy, and for attack methods a lower value is better. Clean is the accuracy of the
vanilla GCN on clean graphs. We highlight the strongest attack in bold.

Dataset Training set
MetaAttack PGD FGSM

CleanTrain-Train Train-Test Test-Test Acc Train-Train Train-Test Test-Test Acc Train-Train Train-Test Test-Test Acc
(IS1) (IS2) (IS3) (IS1) (IS2) (IS3) (IS1) (IS2) (IS3)

Citeseer

10% 11.053 4.935 0.007 67.49 17.650 4.601 0.000 69.56 22.131 4.311 0.000 69.99 74.63
20% 3.620 2.655 0.009 72.27 8.562 2.055 0.000 73.38 10.041 1.853 0.000 71.23 74.73
30% 2.884 1.646 0.100 75.81 5.142 1.279 0.000 76.15 5.556 1.190 0.000 76.12 76.26
40% 1.554 1.332 0.311 75.95 3.666 0.861 0.000 77.20 3.859 0.791 0.000 77.15 77.19
50% 1.145 1.175 0.514 75.71 2.785 0.602 0.000 77.59 2.962 0.503 0.000 77.61 77.66
60% 1.093 1.175 0.717 77.88 2.165 0.460 0.000 79.11 2.072 0.541 0.000 78.84 79.26
70% 0.809 1.177 1.213 75.64 1.744 0.347 0.000 77.73 1.795 0.286 0.000 77.56 77.68
80% 0.481 1.868 2.414 76.63 1.424 0.271 0.000 79.14 1.473 0.171 0.000 79.15 79.14
90% 0.334 3.749 5.142 76.51 1.181 0.245 0.000 82.22 1.181 0.197 0.000 82.14 82.26

Polblogs

10% 9.095 4.394 0.156 70.4 26.708 3.918 0.048 80.85 28.606 3.956 0.000 82.56 95.04
20% 3.122 2.228 0.255 74.17 8.651 2.029 0.010 85.64 9.141 1.975 0.000 86.66 95.33
30% 1.494 1.475 0.504 73.60 4.239 1.467 0.009 86.43 4.688 1.365 0.001 87.22 95.21
40% 1.028 1.166 0.766 73.44 3.065 1.054 0.015 88.85 3.351 0.964 0.000 89.48 95.49
50% 0.776 1.263 0.971 73.95 2.192 0.901 0.002 88.88 2.387 0.807 0.000 90.51 95.36
60% 0.642 1.183 1.251 76.19 1.733 0.787 0.000 89.18 1.837 0.701 0.000 91.57 95.97
70% 0.399 1.440 2.191 73.35 1.418 0.730 0.000 90.37 1.477 0.654 0.000 91.33 95.67
80% 0.260 2.066 4.194 72.50 1.225 0.680 0.000 90.00 1.327 0.443 0.000 92.01 96.85
90% 0.299 3.734 8.558 76.13 1.140 0.435 0.000 92.76 1.124 0.492 0.000 94.83 98.32

13

Published as a conference paper at ICLR 2023

(a) Meta-Cora-0.1 (b) Meta-Cora-0.5 (c) Meta-Cora-0.9 (d) Meta-Citeseer-0.1

(e) Meta-Citeseer-0.5 (f) Meta-Citeseer-0.9 (g) PGD-Cora-0.1 (h) PGD-Cora-0.5

(i) PGD-Cora-0.9 (j) PGD-Citeseer-0.1 (k) PGD-Citeseer-0.5 (l) PGD-Citeseer-0.9

Figure 5: The adjacency matrix of Cora and Citeseer attacked by MetaAttack and PGD with different
training size.

A.3 PROOF OF THEOREM 4.1

Proof. There are N nodes and Nk
2 edges in graph G. Totally ∆Nk

2 will be inserted in the graph.

Each node in the training set will have 2
∆Nk

2

Nt = ∆k
t more neighbours with different label due to the

uniform insertions. Thus, the community features of the nodes in class 0 can be viewed as sampled
from a biased distribution ptrain(x̃|y = 0):

N (
(1 + hk)µ0 + (k − hk + ∆k

t)µ1

k + 1 + ∆k
t

,
Λ

k + 1 + ∆k
t

). (7)

The structures of testing nodes are not modified, so ptest(x̃|y = 0) is:

N (
(1 + hk)µ0 + (k − hk)µ1

k + 1
,

Λ

k + 1
). (8)

Let δ0 and δ1 denote the mean of ptrain(x̃|y = 0) and ptest(x̃|y = 0), respectively. According to
Eq. (6) and the KL-Divergence formula for two normal distribution, we have

DKL(ptrain(x̃|y = 0), ptest(x̃|y = 0))

=
1

2

{
log

(k + 1 + ∆k
t)d

(k + 1)d
+

d(k + 1)

k + 1 + ∆k
t

+

(k + 1)(δ0 − δ1)
TΛ−1(δ0 − δ1)− d

} (9)

14

Published as a conference paper at ICLR 2023

Letk+1+∆k
t

k+1 = S, then the first two terms of Eq. (9) can be rewritten as

logSd +
d

S
, S > 1. (10)

Take the derivative of Eq. (10) w.r.t. to S

d

S
(

1

ln 2
− 1

S
), (11)

apparently it is larger than 0 for S > 1, so Eq. (10) is monotonically increasing w.r.t S and
monotonically decreasing w.r.t. the size of training set t.

For the third term of Eq. (9), we first calculate δ0 − δ1. For notational simplicity, we let P =
(1 + hk)µ0 + (k − hk)µ1

δ0 − δ1 =
P + ∆k

t µ1

k + 1 + ∆k
t

− P

k + 1

= ∆k
(k + 1)µ1 − P

(tk + t+∆k)(k + 1)
.

(12)

Then we let ∆k (k+1)µ1−P
(tk+t+∆k)(k+1) = v. Apparently, vT v is monotonically decreasing w.r.t. t, and we

can easily prove vTΛ−1v is also monotonically decreasing, because Λ−1 just introduces constants
into each element of v.

Therefore, Eq. (9) will become larger as t gets smaller. This also holds for nodes in class 1. Then we
can get the conclusion that the smaller the t, the larger the distribution shift.

A.4 IMPACT OF SURROGATE LOSS AND GRADIENT COMPUTATION

The Impact of Ltrain or Lself Table 5 shows the attack tendencies and performance of PGD
with Ltrain or Lself . We only provide the results on Cora, but similar results are observed on other
commonly used datasets for SSNC. Ltrain will make the attack algorithm tend to attack the training
nodes, while Lself will make it attack the testing nodes.

Table 5: The location statistics of adversarial edges on Cora under 10% perturbation. Num represents
the number of adversarial edges in the corresponding area. Evasion and Poison are the adversarial
accuracy of GCN Kipf & Welling (2017) under evasion and poisoning attack. We highlight the
stronger attack in bold.

Attack IS1/Num IS2/Num IS3/Num clean Evasion Poison
PGDtrain 22.18/224 4.28/778 0.00/2 83.56 83.39 77.92
PGDself 0.80/8 1.40/252 0.91/740 83.56 81.94 83.55

Ltrain focuses on the loss of the training nodes, which is mainly related to the local structure of
these nodes. Therefore, when computing the gradient ∇ALatk, only the part of the adjacency matrix
associated with the training nodes will be modified, i.e., the Train-Train and Train-Test. PGDtrain

works in poisoning attack but fails in evasion attack. This result is as expected because ptrain is
well-perturbed but ptest nearly remains unchanged. There are some edges in the Train-Test, but the
largest part of the graph, the Test-Test, is barely changed.

Lself utilizes the pseudo labels of the unlabeled nodes to compute the loss, so the majority of
modifications are around the unlabeled nodes. Although PGDself seems to work in evasion attack,
the degradation in accuracy is not as pronounced as PGDtrain in poisoning attack. We suggest
that there are mainly two reasons: (1) The testing set is much larger than the training set, so the
same perturbation brings a smaller change in ptest than in ptrain. (2) We use Cross-Entropy Loss to
conduct these experiments. Geisler et al. (2021) shows that CE Loss makes algorithms primarily
attack nodes that are already misclassified. Such attacks are valid in poisoning attack and can further
bias the model pθ(y|x̃). However, in evasion attack, attacking misclassified nodes will not bring any

15

Published as a conference paper at ICLR 2023

drop in accuracy.Another example that uses Lself is PR-BCD Geisler et al. (2021), which is an novel
evasion attack. We present the location statistics of perturbations on Citeseer attacked by it in Table
6. We can see that all the perturbations are generated around the testing nodes, leading to effective
performance.

Table 6: The location statistics of adversarial edges on Citeseer attacked by PR-BCD.

Ptb Rate Train-Train Train-Test Test-Test
5% 0 15 168

10% 0 29 322
15% 0 55 488
20% 0 69 665

Gradient Computation MetaAttack is a special case due to its ability to adjust the distribution of
adversarial edges. Even today, many practitioners still consider it to be the SOTA of poisoning attacks
on small-scale graphs. According to the Theorem 4.1, this adaptivity makes MetaAttack incline
to attack the more easily perturbed distributions in ptrain and ptest. In other words, it identifies
structural modifications that significantly increase distribution shift.

We find that this adaptability comes from its way of calculating the gradient. Let’s review the
meta-gradient expressed in Zügner & Günnemann (2019):

∇ALatk(fθT (A,X)) = ∇fLatk(fθT (A,X)) · [∇AfθT (A,X) +∇θT fθT (A,X) · ∇AθT],

(13)

∇Aθt+1 = ∇Aθt − α∇A∇θtLtrain(fθt(A,X) (14)

where T is the training steps to obtain the optimal parameter via vanilla gradient decent with learning
rate α. The parameters θ are often fixed and detached when calculating the gradient ∇ALatk in other
gradient-based methods Xu et al. (2019a); Wu et al. (2019). In MetaAttack, however, θ is iteratively
retrained as the graph is gradually contaminated, and the derivatives w.r.t. the adjacency matrix are
taken into account.

The effectiveness and adaptive capability of MetaAttack stems from this gradient calculation
method. MetaAttack will perform similar to PGD if the parameters are fixed or detached from
the gradient computation. Table 7 shows the performance of Metaself , Metatrain, Detachself ,
Detachtrain, Fixself , and Detachtrain. Detach and Fix are two variants of MetaAttack. The former
detaches the parameters from the meta gradient calculation and the latter fixes the parameters after
training in the clean graph. Metaself is the only one that always attacks the more easily perturbed
distribution in ptrain and ptest. Other attack methods with Lself will only attack the testing nodes,
but Metaself will attack the training nodes when the size of the testing set is samll. It is because
the meta gradient will take the training process into account by Eq. 3, which is associated with
the training nodes. Thus, the local structure of the training nodes is related to the meta gradient
computation. Detach and Fix perform like PGD that the tendency is closely related to the surrogate
loss, i.e., Lself or Ltrain.

As expected, Metaself outperforms all the variants regardless of the data split. It is worth noting that
variants with Ltrain usually performs better when the training set is small, while variants with Lself

are more destructive when the testing set is small.

Different Surrogate Loss To ensure this tendency is not caused by a specific type of loss, we
explore the effect of other two losses in Graph Attack, including the Carlini-Wagner loss Xu et al.
(2019a) CW= min(maxc̸=c∗ zc − zc∗ , 0).and Masked Cross Entropy MCE Geisler et al. (2021)
= 1/V+ |

∑
i∈V+ − log(p

(i)
c∗), where c∗ is the ground truth label and V+ indicates correctly classified

nodes. For CW and MCE, we can also divide them into Lself and Ltrain according to which nodes
are used to calculate the loss. In Table 8, we present the IS for Metaself with CW loss and MCE
loss. Metaself with CW and MCE can also adjust the distribution of the perturbations according to
the size of the training set, which is consistent with CE loss. With all the results, we conclude that

16

Published as a conference paper at ICLR 2023

Table 7: The location statistics of perturbations and the performance of GCN poisoning attack on
Cora under 10% perturbation. IS3-0.8 is the IS3 when the size of the training set is 0.8 and reveals
the adaptivity of different variants. We highlight the strongest attack method in bold.

Attack IS1/Num IS2/Num IS3/Num Poison IS3-0.8 Poison-0.8
Metatrain 14.46/73 4.75/432 0.00/1 73.37 0.00 88.35
Metaself 11.88/60 4.86/442 0.01/3 71.62 3.409 80.32

Detachtrain 14.65/74 4.74/431 0.00/1 79.94 0.00 87.52
Detachself 0.00/0 0.80/73 1.06/433 81.73 23.56 81.44

Fixtrain 15.05/76 4.64/422 0.20/8 79.63 0.00 89.56
Fixself 0.00/0 0.85/77 1.05/429 82.80 26.34 83.53

the key to affecting the distribution of adversarial edges is which nodes are used to calculate the loss
rather than the type of surrogate loss.

Table 8: The IS of Metaself with two different surrogate losses, CW, and MCE under 10%
perturbation rate. The Acc indicates the adversarial accuracy, and for attack methods a lower
value is better. Clean is the accuracy of the vanilla GCN on clean graphs.

Dataset Training set
CW MCE

CleanTrain-Train Train-Test Test-Test Acc Train-Train Train-Test Test-Test Acc
(IS1) (IS2) (IS3) (IS1) (IS2) (IS3)

Cora

10% 7.615 5.078 0.005 71.55 9.012 4.854 0.051 74.42 83.56
20% 2.953 2.559 0.096 82.07 3.969 2.548 0.043 78.80 85.67
30% 1.903 1.626 0.295 80.64 2.450 1.622 0.198 84.49 86.99
40% 1.430 1.231 0.500 80.07 1.689 1.132 0.517 81.88 87.01
50% 0.986 1.079 0.856 83.11 0.828 1.115 0.943 80.24 87.22
60% 0.625 1.182 1.300 83.40 0.718 1.091 1.361 83.05 88.04
70% 0.447 1.489 1.742 81.17 0.540 1.338 1.940 84.12 89.98
80% 0.370 1.942 3.572 79.72 0.410 1.979 2.629 83.52 88.87
90% 0.329 3.632 8.402 81.80 0.302 3.830 7.001 82.54 93.69

Citeseer

10% 6.971 5.103 0.003 65.09 9.652 4.967 0.000 68.14 74.63
20% 3.924 2.569 0.026 74.03 3.045 2.646 0.043 70.77 74.73
30% 2.413 1.760 0.084 74.58 1.720 1.942 0.056 72.77 76.26
40% 1.598 1.433 0.152 75.28 1.411 1.439 0.228 72.49 77.19
50% 1.350 1.087 0.472 75.62 1.317 1.082 0.516 73.25 77.66
60% 0.825 1.208 0.772 76.31 0.862 1.134 0.909 75.13 79.26
70% 0.634 1.395 1.161 72.79 0.656 1.323 1.375 75.17 77.68
80% 0.409 1.937 3.034 73.11 0.520 1.825 2.138 72.78 79.14
90% 0.381 3.536 5.792 70.00 0.445 3.338 4.137 77.79 82.26

Polblogs

10% 6.202 4.386 0.177 70.44 9.274 4.307 0.156 68.09 95.04
20% 3.409 2.150 0.272 73.66 2.948 2.257 0.247 69.63 95.33
30% 2.163 1.444 0.405 74.23 1.699 1.512 0.432 70.38 95.21
40% 1.170 1.214 0.639 76.79 1.039 1.214 0.697 73.80 95.49
50% 0.876 1.130 0.864 73.30 0.790 1.099 1.013 74.32 95.36
60% 0.527 1.209 1.435 73.39 0.574 1.240 1.237 74.18 95.97
70% 0.399 1.488 1.990 71.23 0.368 1.452 2.322 69.71 95.67
80% 0.328 2.144 2.627 71.74 0.325 2.110 2.942 67.52 96.85
90% 0.299 3.869 6.244 71.17 0.299 3.742 8.526 68.83 98.32

17

Published as a conference paper at ICLR 2023

Table 9: Adversarial accuracy(%) on Cora and
Citeseer attacked by Metaself and Metatrue.

Datasets Ptb rate Metaself Metatrue

Cora

5% 76.36 75.84
10% 71.62 71.33
15% 66.37 64.42
20% 60.31 58.81

Citeseer

5% 71.13 71.20
10% 67.49 67.24
15% 61.59 60.88
20% 56.26 56.14

Pseudo-labels in Lself Attacks with pseudo
labels behave similarly to those with ground-truth
labels because (see the Table 9; Meta-true means
Meta-self uses the ground-truth labels to generate
perturbations instead of pseudo labels). We guess
it is because, in homophilous graphs, the pseudo
labels are generally accurate. Thus, attacks with
Lself will focus on modifying the local structure
of the testing nodes to make the predictions away
from the ground-truth labels. In many cases, the
size of the testing set is relatively large, so it is hard
to increase the distribution shift by modifying the
testing structure according to Theorem 4.1. This
way, methods like PGDself fail.

A.5 INSERTION VS. DELETION

Proof of Theorem 5.1

Proof. The Kl-Divergence between ptrain(x̃|y = 0) and ptest(x̃|y = 0) of insertion is shown in Eq.
(9), and we denote it as DKL−INS . Similarly, we have DKL−DEL as followed:

DKL−DEL(ptrain(x̃|y = 0), ptest(x̃|y = 0))

=
1

2

{
log

(k + 1− ∆k
t)d

(k + 1)d
+

d(k + 1)

k + 1− ∆k
t

+ (k + 1)(δ′0 − δ1)
TΛ−1(δ′0 − δ1)− d

}
,

(15)

where δ′0 =
(1+hk−∆k

t)µ0+(k−hk)µ1

k+1−∆k
t

. Now we compare DKL−INS and DKL−DEL. k+1−∆k
t

k+1 ≥ ln 2

due to the assumption ∆k
t(k+1) ≤ 1−ln 2. We already know that logSd+ d

S is monotonically increasing
w.r.t. S if S ≥ ln 2. Therefore,

log
(k + 1 + ∆k

t)d

(k + 1)d
+

d(k + 1)

k + 1 + ∆k
t

> log
(k + 1− ∆k

t)d

(k + 1)d
+

d(k + 1)

k + 1− ∆k
t

(16)

Then, if vT v > (δ′0 − δ1)
T (δ′0 − δ1), we can conclude that DKL−INS > DKL−DEL.

δ′0 − δ1 =
∆

k

P − (k + 1)µ0

(tk + t−∆k)(k + 1)
(17)

Let δ′0 − δ1 = u. This is equivalent to comparing |v| and |u|.

|v| =

∣∣∣∣∣∆k (k + 1)µ1 − P

(tk + t+ ∆
k)(k + 1)

∣∣∣∣∣
=

∣∣∣∣∆k
(hk + 1)(µ1 − µ0)

(tk + t+∆k)(k + 1)

∣∣∣∣
=

∣∣∣∣∆k
(hk + 1)(µ1 − µ0)(tk + 1−∆k)

(tk + t+∆k)(tk + 1−∆k)(k + 1)

∣∣∣∣ .
(18)

We have |u|:

|u| =
∣∣∣∣∆k

(k − hk)(µ1 − µ0)(tk + 1 +∆k)

(tk + t+∆k)(tk + 1−∆k)(k + 1)

∣∣∣∣ (19)

Neglecting the common terms of |v| and |u|, we only need to compare the following two terms:

|(1 + hk)(tk + 1−∆k)|
|(k − hk)(tk + 1 +∆k)| (20)

18

Published as a conference paper at ICLR 2023

Both of of them are positive because 1 > h > 0.5 and (2h− 1)t > ∆ . The former term subtract the
latter term:

1 + (2h+ t−∆− 1)k + (2th− t−∆)k2 (21)
As h > 0.5 and (2h− 1)t > ∆ due to the assumption, eq. (21) is positive. To sum up, DKL−INS >
DKL−DEL. This conclusion also holds for class 1. We can conclude that the distribution shift caused
by insertion is larger.

Synthetic Graph We build a graph containing two types of nodes. The features of class 0 ∈ R10

and sampled from N (0,Λ0.2), and the features of class 1 are sampled from N (1,Λ0.2), where Λ0.2

is a diagonal matrix, and each element is 0.2. There are 150 nodes in class 0 and class 1, respectively,
and all nodes of the same class are connected to each other. Thus, this graph is dense and the
possibilities to insert and delete is balanced. We conduct MetaAttack to attack this graph, and the
results are listed in Table 10. We find that MetaAttack still tends to inset but not delete edges.

Table 10: Share (in %) of edge deletions and insertions by MetaAttack on the synthetic graph.

Ptb Rate Insertion Deletion

5% 814 311
10% 2087 163
15% 2961 414
20% 3704 796

A.6 LEVERAGE OF HIGH-DEGREE NODES

Suppose the node features follow distribution like the normal distribution, in which probability density
is higher around the mean. In that case, the aggregation can make the high-degree nodes move to
the high-density region and reduce the variance. High-density data can be easily classified and is
insensitive to noise Zhu et al. (2022a). According to Li et al. (2022), we can trust them more and
assign them higher weights during the aggregation:

ht
i = ReLU

((∑
j∈Ni

(didj)
0.5

Z
ht−1
j

)
W t

θ

)
, (22)

where d is the degree, and Z is a normalization coefficient. This only modifies the aggregation weights
in the GCN and can be merged into any Robust GNNs with vanilla GCN. Table 11 demonstrates that
assigning high-density data higher weights can indeed improve the robustness of GNNs. This trick
just slightly leverages the properties of high-degree nodes. However, one also might apply a more
sophisticated method which we leave for future work.

A.7 HEURISTIC ATTACK

The algorithm of our heuristic attack is shown in Algorithm 1. We first construct the candidate
attacking set C that contains the nodes whose degrees are lower than the average degree. Then we
divide C into Ctrain and Ctest. We generate cross-label edges on the graph according to the data
split. Specifically, we compute λ1, λ2, and λ3 using Eq. (3). Here we suppose the training set is
much smaller than the testing set, i.e., λ1 < λ3. The total perturbation is Nptb = ∆ |E|. We inject
Nptb

λ1

λ1+λ2
cross-label edges into the Train-Train area and Nptb

λ2

λ1+λ2
into the Train-Test area. For

the nodes in the training set we label them by the pseudo labels predicted by a two layer vanilla GCN.

In Fig. 6 we compare the proposed algorithm with other attack methods on Citeseer and ogbn-arxiv.
On Citeseer, our method can achieve comparable performance to MetaAttack, and even better under
low perturbation rates.

The average runtime of 10 runs is shown in Table 12. Gradient-based methods need to optimize
all possible entries in the dense adjacency matrix A, which comes with expensive computation
and quadratic space complexity. Our methods and DICE are both rule-based, much faster, and

19

Published as a conference paper at ICLR 2023

Table 11: Classification accuracy(%) on dataset Cora and Citeseer attacked by MetaAttack under
different perturbation rates (stronger is bold). The asterisk indicates that the GCN part of this model
is replaced with Eq. (22). Jaccard Wu et al. (2019) and SimpGCN Jin et al. (2021) are two robust
GNNs with vanilla GCN. The data split follows 10%/ 10%/ 80%(train/ val/test).

Datasets Ptb rate GCN(*) Jaccard(*) SimpGCN(*)

Cora

0% 83.56(82.76) 81.79(81.11) 83.77(83.64)
5% 76.36(78.17) 80.23(80.57) 78.98(80.45)

10% 71.62(74.23) 74.65(76.99) 75.07(78.04)
15% 66.37(70.89) 74.29(76.32) 71.42(75.31)
20% 60.31(69.59) 73.11(73.42) 68.90(73.29)

Citeseer

0% 74.63(74.00) 73.64(73.11) 74.66(75.23)
5% 71.13(72.71) 71.15(71.48) 73.54(74.25)

10% 67.49(69.17) 69.85(70.53) 72.03(72.90)
15% 61.59(64.35) 67.50(68.82) 69.82(72.15)
20% 56.26(60.86) 67.01(67.14) 69.59(71.26)

Algorithm 1: Heuristic Attack
Input: Graph G = {V, E}, Labels yL, Perturbation rate ∆
Output: The poisoned graph G′

1 Nptb = ∆ |E|;
2 Compute the degrees d of all nodes and the mean dmean;
3 Construct the low-degree node set C = {vi for vi in V if di < dmean} ;
4 Construct Ctrain that contains training nodes in C and Ctest that contains testing nodes in C ;
5 Compute λ1, λ2, and λ3 using Eq. (3);
6 λmin = min(λ1, λ3) ▷ Suppose λ1 < λ3;
7 r1 = λ1

λ1+λ2
;

8 r2 = λ2

λ1+λ2
;

9 for i=1, ..., r1 ·Nptb do
10 Connect two nodes from different class in Ctrain that are not connected yet.
11 end
12 for i=1, ..., r2 ·Nptb do
13 Connect one node in Ctrain and one node in Ctest that are from different class and not

connected yet.
14 end
15 return the poisoned graph G′;

space-saving. Our method runs faster than DICE in ogbn-arxiv because ours randomly sample nodes
from the candidate set, which is much smaller than the entire node-set.

Our heuristic attack method is coarse-grained and straightforward, and we do not aim to propose
a SOTA mode. We try to clarify that by following Tips 1 to 5 and inheriting the tendencies which
enlarge the distribution shift, performance close to that of the gradient-based method can be achieved
efficiently. More than that, it can be scaled to large graphs.

20

Published as a conference paper at ICLR 2023

0 5 10 15 20
Perturbation Rate (%)

0.55

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

DICE
Meta
PGD
Ours

(a) Citeseer

0 5 10 15 20
Perturbation Rate (%)

0.50

0.55

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

DICE
DICEimp
Ours

(b) ogbn-arxiv

Figure 6: The adversarial accuracy of GCN attacked by different methods on Citeseer and ogbn-arxiv.
PGD and MetaAttack face the OOM problem on ogbn-arxiv.

Table 12: Average time cost (s) of different attack methods on Citeseer and ogbn-arxiv after 10 runs.

∆ (Citeseer) 5% 10% 15% 20%

Ours 0.063 0.121 0.185 0.248
PGD 7.143 7.172 7.1650 7.186
Meta 129.227 271.354 405.466 548.913
DICE 0.043 0.044 0.046 0.047

∆ (ogbn-arxiv) 5% 10% 15% 20%

Ours 6.642 11.696 16.564 22.496
PGD OOM / / /
Meta OOM / / /
DICE 49.243 53.521 56.213 56.755

A.8 IMPROVE ROBUSTNESS VIA SELF-TRAINING

10%/10%/80% is the most commonly used data split in graph adversarial attack, under which effective
poisoning attack methods like MetaAttack and PGD tend to attack the training nodes, so the local
structure of testing nodes is nearly clean (according to Fig. 5). To summarize, the clean information
includes the labels of training nodes and the local structure of test nodes. Thus, a straightforward
method to enhance the robustness is self-training Li et al. (2018). We can assign pseudo-labels to the
testing nodes and then train the GNN via the pseudo-labels and the clean local structure.

Here we provide a very simple implementation. We use an MLP instead of a GNN to acquire the
pseudo-labels because the local structure of training nodes is contaminated. Specifically, we first
train an MLP with given labels, then select the predictions with the highest confidence for each class
by comparing the softmax scores and add them to a new label set Vpsu. We finally train a new GCN
by computing cross-entropy loss on Vpsu. This Self-Training Robust GCN (STRG) is described in
Algorithm 2. Considering this method from the perspective of data distribution, it actually reduces the
distribution shift effectively by training with ptest. Although the pseudo-labels will introduce some
new problems, like label noise, it can be viewed as a trade-off between performance and robustness.

We compare STRG with some baselines and SOTA robust GNNs on two datasets under MetaAttack in
Table 13. We set m = 80 in these two datasets GNNGuard Zhang & Zitnik (2020) and ProGNN Jin
et al. (2020) are two robust GNNs with structure learning. SimpGCN Jin et al. (2021) utilizes a kNN
Graph to keep the nodes with similar features close in the representation space and a self-learning
regularization to keep the nodes with dissimilar features remote. Elastic Liu et al. (2021a) introduces
ℓ1-norm to graph signal estimator and proposes elastic message passing which is derived from
one-step optimization of such estimator. The local smoothness adaptivity enables the Elastic GNNs
robust to structural attacks. STABLE Li et al. (2022) optimizes the graph structures by unsupervised
representations learned by contrastive learning. The data split is 10%/10%/80%, and we set the
perturbation rate from 0% to 20%. The implementation of these methods follows Appendix A.1, and
the hyper-parameter t in STRG is 80.

21

Published as a conference paper at ICLR 2023

Algorithm 2: Self-Training Robust GCN (STRG)
Input: Graph G = {V, E}, Labels yL

Output: The predictions of testing nodes

1 Z = MLP(X) ∈ RN×|C|, Z is the output of a well-trained MLP;
2 Initial an empty node set Vpsu;
3 for each class ck do
4 Find the top m nodes in Z:,k;
5 Add them to the Vpsu;
6 end
7 Return the predictions of f∗;

Table 13: Classification accuracy(%) under different perturbation rates. The top two performance is
highlighted in bold and underline.

Dataset Ptb Rate GCN GNNGuard ProGNN SimPGCN Elastic STABLE STRG

Cora

0% 83.56±0.25 78.52±0.46 84.55±0.30 83.77±0.57 84.76±0.53 85.58±0.56 82.59±0.65
5% 76.36±0.84 77.96±0.54 79.84±0.49 78.98±1.10 82.00±0.39 81.40±0.54 82.52±0.59
10% 71.62±1.22 74.86±0.54 74.22±0.31 75.07±2.09 76.18±0.46 80.49±0.61 82.34±0.25
15% 66.37±1.97 74.15±1.64 72.75±0.74 71.42±3.29 74.41±0.97 78.55±0.44 79.96±0.39
20% 60.31±1.98 72.03±1.11 64.40±0.59 68.90±3.22 69.64±0.62 77.80±1.10 77.72±0.27

Citeseer

0% 74.63±0.66 70.07±1.31 74.73±0.31 74.66±0.79 74.86±0.53 75.82±0.41 76.46±0.67
5% 71.13±0.55 69.43±1.46 72.88±0.32 73.54±0.92 73.28±0.59 74.08±0.58 75.98±0.58
10% 67.49±0.84 67.89±1.09 69.94±0.45 72.03±1.30 73.41±0.36 73.45±0.40 76.56±0.52
15% 61.59±1.46 69.14±0.84 62.61±0.64 69.82±1.67 67.51±0.45 73.15±0.53 76.58±0.84
20% 56.26±0.99 69.20±0.78 55.49±1.50 69.59±3.49 65.65±1.95 72.76±0.53 76.14±0.40

We can observe that STRG outperforms other methods under different perturbation rates. In particular,
STRG achieves almost complete robustness on the Citeseer. The performance shows no degradation
as the perturbation rate rises. Additionally, MLP is much faster than graph models, so this self-training
strategy can be easily scaled to large graphs. Here we use GCN as the downstream task classifier, but
in fact any GNNs can be merged with it.

We design this method with a hypothesis, i.e., that adversarial edges are mostly located around
training nodes, but attackers can perturb ptest to make an unbiased model predict the biased data.
However, here is also a trade-off between performance and unnoticeabilty for attackers. If the attacker
spreads their attacks over the whole graph instead of focusing on the training set, the performance will
drop considerably (we will elaborate on this in Appendix A.9). In a nutshell, STRG can successfully
defend against effective attack methods, and when an attacker tries to bypass the defense strategy of
STRG, the attack will fail.

A.9 DISCUSSION ON THE DATA SPLIT

0 5 10 15 20
Perturbation Rate (%)

0.60

0.65

0.70

0.75

0.80

0.85

A
cc

ur
ac

y

Metawithout
Meta
PGDwithout
PGD
Ran

(a) Cora

0 5 10 15 20
Perturbation Rate (%)

0.55

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

Metawithout
Meta
PGDwithout
PGD
Ran

(b) Citeseer
.

Figure 7: The adversarial accuracy of GCN on Cora and Citeseer. PGDwithout and Metawithout are
two variants without the information of data split

Nearly all gradient-based attack methods know the data split by default. However, the importance of
it is ignored. Fig. 7 shows that MetaAttack and PGD attack Cora and Citeseer without the information

22

Published as a conference paper at ICLR 2023

0-5 5-10 10-20 20-40
Degree Distribution

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
en

si
ty

Train
Test

(a) Citeseer

0-5 5-10 10-20 20-40
Degree Distribution

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
en

si
ty

Train
Test

(b) Cora

0-5 5-10 10-20 20-40
Degree Distribution

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

Train
Test

(c) Polblogs

Figure 8: The degree distribution of Citeseer, Cora, and Polblogs attacked by MetaAttack under 5%
perturbation. The degrees of training nodes are higher than the testing nodes, which may make the
attack noticeable.

Table 14: Performance of GCN attacked by different methods under 5% perturbation where the
Public denotes the widely used data split that uses 20 nodes per class as training set.

Datasets Cora Citeseer

Split Public 10%10%80% Public 10%10%80%

Clean 81.23±0.31 83.56±0.25 69.73±0.52 74.63±0.66

MetaAttack 63.79±0.68 76.36±0.84 52.04±0.43 71.13±0.55
PGDself 70.16±0.34 79.98±0.31 58.50±0.26 71.45±0.47
FGSM 71.15±0.56 80.37±0.48 62.53±0.45 72.55±0.61

of data split. Data split is necessary when implementing PGD and MetaAttack, so we conduct the
attack in a random split, which is inconsistent with the split during testing the classifier. PGDwithout

and Metawithout are not as effective as the vanilla models, and their performance is even close to the
random attack. It is hard to effectively manipulate the prediction without the information of the data
split. Meanwhile, attackers and defenders can easily enhance their model by attacking or defending
the more vulnerable part of the graph. It is essential to realize that the leakage of the data split can
pose a severe security risk.

Moreover, the public split, i.e., 20 nodes per class as the training set, will make the training set
significantly small so that ptrain is easy to be perturbed. We list the performance of poisoning attack
methods under different data splits in Table 14. The attack algorithms can easily work on the public
split. In addition, such a small training set might make the attack noticeable. As shown in Fig. 8,
under a small perturbation rate (e.g. 5%), if attackers only modify the local structure around the
training nodes, the attack is easily detected.

23

	Introduction
	Related Work
	Preliminaries
	Rethinking Graph Adversarial Attacks
	The Location of Adversarial Edges
	Distribution Shift in Graph Attacks
	Impact of Surrogate Loss and Gradient Computation

	Explanation of Phenomena in Graph Attacks
	Tend to Insert but Not Delete
	Gradient-based Methods Outperform Homophily-based Methods
	High-degree Nodes

	Practical Tips
	poisoning attack
	A heuristic Attack Algorithm

	Evasion Attack
	Defense
	For Datasets

	Conclusion
	Reproducibility Statement
	Ethic Statement
	acknowledgement
	Appendix
	Implementation Details
	The Distrubion of Adversarial Edges
	Proof of Theorem 4.1
	Impact of Surrogate Loss and Gradient Computation
	Insertion vs. Deletion
	Leverage of High-degree Nodes
	Heuristic Attack
	Improve Robustness via Self-training
	Discussion on The Data Split

