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Abstract—Graph Neural Networks (GNNs) are vulnerable to
perturbations in both edges and attributes by fraudsters attempt-
ing to evade detection. A low-cost and effective perturbation
strategy involves establishing connections with benign users and
providing as little information as possible, leading to a graph
with noisy structure and absent attributes. We formulate a novel
problem as Learning in Graphs with Noisy structures and Absent
node attributes (LGNA), for which no existing methods are specif-
ically designed. To mitigate this gap, we propose a reliable graph
learning framework called RENA, which implements a “Dilution
of Unreliable Information” approach for the LGNA task. The
core principle of RENA is to utilize more reliable information to
decrease the proportion of unreliable information, thus diluting
its impact. Specifically, only the observed node attributes and
unconnected node pairs are considered reliable, while imputed
attributes and connected node pairs are deemed unreliable. We
first randomly sample a large number of unconnected node pairs
and fewer connected pairs to create different structural views
to supervise structure learning and dilute the impact of noisy
edges. Next, we apply a graph autoencoder framework, assigning
higher weights to the observed attributes and lower weights to
the imputed attributes during the reconstruction process, thereby
diluting the impact of imputation noise. Experiments show that
our method outperforms state-of-the-art baselines on LGNA
scenarios and conventional incomplete graph learning tasks.

Index Terms—Graph Neural Network, Noisy Structures, Ab-
sent Attributes, Reliable Graph Learning

I. INTRODUCTION

With the rapid advancement of technology, fraudulent activ-
ities have become increasingly prevalent, impacting industries
such as finance [1], [2], healthcare [3], and review man-
agement [4], resulting in significant economic losses [5]. In
2023, approximately 25.5% of the global population suffered
financial losses due to fraud, with total economic damages
projected to reach $1.026 trillion [6]. Interactions involving
fraudsters and benign users can be modeled as graph-like data,
with users and their interactions modeled as nodes and edges.
GNN-based fraud detection methods [7], [8] have achieved
remarkable success in identifying fraudsters.

However, these GNN-based fraud detection models are
particularly susceptible to strategies employed by fraudsters
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Fig. 1. Fraudsters often interact with benign users to conceal their activities
and evade detection by regulatory authorities. Additionally, users are unwilling
to provide optional information.

seeking to evade detection. Most well-established GNNs [9]—
[11] hinge on the message-passing mechanism, where the
graph structure and node attributes are essential for model
effectiveness. Hence, as nodes in graphs, fraudsters can po-
tentially undermine the performance of GNN-based fraud
detection models by perturbing both edges and attributes. For
edge perturbation, the most intuitive manner is to establish
connections with benign users. By doing so, the information
from these benign users could be propagated to the fraudsters
along with the injected edges, making it more difficult for
GNN-based models to distinguish them from benign users.
Regarding node attribute perturbation, on the other side, a low-
cost yet effective strategy is keeping silent. It means providing
as little valuable information as possible to conceal fraudulent
intentions by deriving a low-quality initial embedding [12],
[13]. Besides, some benign users are reluctant to disclose
personal information, such as age and gender, beyond the
required information [14]. We observe from a real-world
dataset [15] that almost 80.97% of fraudsters and 74.75% of
benign users have incomplete profile information.

Consequently, in fraud scenarios, the graph data can be
characterized as Graphs with Noisy structures and Absent
node attributes (GNA). GNA represents a generalized form of
graph data that encompasses noisy edges and absent attribute
dimensions, as depicted in Figure 1. In such graphs, fraudulent
nodes often form multiple noisy edges with benign ones while
exhibiting partially blank attributes. The GNA learning task is
referred to as Learning in Graphs with Noisy structures and



Absent attributes, abbreviated as LGNA in this paper.

To the best of our knowledge, there are no existing ap-
proaches specifically tailored for LGNA. Existing solutions re-
lated to LGNA include Graph Structure Learning (GSL) [16]-
[19], graph node attribute imputation [20]-[23] and incom-
plete graph learning [14], [24], [25], all of which encounter
critical challenges in addressing LGNA. Firstly, existing GSL
methods [16], [17] heavily depend on observed structural
information as supervision signals, leaving them susceptible to
noisy edges in GNA. The learned structure can be suboptimal
due to the misleading of noisy structures. Secondly, attribute
imputation or incomplete graph learning methods utilize graph
structure information to impute absent attributes, such as
taking the average of the neighbor values. When the structure
contains noisy edges, the imputed attributes would inevitably
collect irrelevant information from its noisy neighbors. There-
fore, existing solutions fail to solve the LGNA problem since
they can be easily affected by unreliable information from
either graph structure or node attributes.

In this paper, we aim to investigate how to accomplish
LGNA more reliably. To this end, we first identify which
aspects of the available information can be considered reliable
and leveraged to address the problem effectively. Recall that
the limitations of existing solutions primarily stem from their
susceptibility to unreliable information, such as noisy edges
and absent node attributes. In contrast, unconnected node pairs
and observed node attributes are potential sources of reliable
information. While some unconnected node pairs represent
latent edges that should exist but were omitted due to data
collection errors, the overall impact of these missing edges is
minimal compared to the vast majority of truly unconnected
node pairs, given the inherent sparsity of graph data, as
validated in the Appendix A. Furthermore, we argue that
observed node attributes are inherently reliable because they
typically carry semantic meaning. This characteristic makes
significant deviations from normal values easily detectable,
regardless of whether the node belongs to a fraudster or a
legitimate user. Consequently, the observed attribute values
should be regarded as reliable.

Based on that analysis, we propose a REliable graph learn-
ing framework for graphs with Noisy structures and Absent
node attributes, named RENA. The heart of RENA lies in
diluting the negative effects caused by unreliable information
and increasing the proportion of a more reliable component.
Specifically, instead of relying on connected node pairs for
graph structure learning [16], [21], RENA leverages reliable
unconnected node pairs as supervision signals. To achieve
this, we randomly sample a large number of unconnected
node pairs along with a smaller set of connected node pairs,
thereby reducing the influence of noisy edges and improving
the quality of the learned graph structure. For node attributes,
our goal is to minimize the impact of noise introduced by
attribute imputation. To this end, we first impute the absent
attributes and subsequently employ a graph autoencoder for
attribute reconstruction. During training, we assign higher
weights to observed than imputed attributes, ensuring that the

learned representations are less affected by imputation noise
and remain faithful to the original data.

Our contribution could be listed as follows:

« We introduce a general graph learning problem, denoted
as LGNA, which arises in the context of graph-based
fraud detection, where the graph structure is noisy and
node attributes are partially absent.

« We propose a reliable graph learning framework termed
RENA to address the challenges in LGNA. The central
idea of RENA is to mitigate the effects of unreliable
structural and imputation noise by leveraging the more
reliable unconnected node pairs and observed attributes
as supervision signals.

« Extensive experiments on three real-world datasets vali-
date the effectiveness of RENA for the LGNA task.

II. RELATED WORK

We categorize graph learning tasks into four scenarios based
on the characteristics of graph data: learning in graphs with
absent node attributes (LGA), learning in graphs with noisy
structure (LGN), learning in graphs with incomplete structure
and attributes (LGI), and learning in graphs with noisy struc-
ture and absent node attributes (LGNA), each corresponding
to the graph data as illustrated in Figure 2. Methods such as
attribute imputation, graph structure learning, and incomplete
graph learning have been proposed to address these tasks.
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Fig. 2. Illustration of four different graph learning tasks.

A. Attribute Imputation for LGA

To address absent attributes, attribute completion aims to re-
cover absent data based on the available information (observed
attributes or graph structure). ITR [21] encodes structural
information using one-hot vectors and uses this encoded struc-
tural information to impute the absent attributes. ASD-VAE
[20] parameterizes the structure and attribute representations
into a shared latent space. Then the shared space is decoupled
into separate views, and absent values are imputed from this
learned latent space. SVGA [23] applies a Gaussian Markov
random field on the graph structure to capture the prior
distribution of absent attributes, imposing strong regulariza-
tion on latent variable distributions via structured variational
inference. SAT [26] assumes that the graph structure and node
attributes originate from the same latent space. It encodes them
separately and reduces the discrepancy between the two using
distribution matching techniques, thereby estimating the node
attributes. PCFI [27] introduces channel-wise confidence to
measure the certainty of the imputed attributes. Based on this
confidence, it imputes attributes via channel-wise inter-node
diffusion and node-wise inter-channel propagation.



B. Graph Structure Learning for LGN

A variety of methods have been proposed to learn graph
structures that benefit downstream tasks. SUBLIME [18] uses
a parameterized model to learn the graph structure based
on complete attributes. The learned graph structure serves
as the learning view, while the original structure acts as
the anchor view. Then it is optimized by maximizing the
agreement between these two views. WSGNN [16] uses the
variational inference method to estimate absent information
from observed data and collaboratively learns graph struc-
tures and node representations through a two-branch network.
GraphGlow [28] models inputs and intermediate results as
random variables to study their dependencies from a generative
perspective. GEN [29] employs Bayesian inference to optimize
graph structure with multi-order neighborhood integration.

C. Incomplete Graph learning for LGI

An incomplete graph refers to a graph where attributes
and structure exhibit partially absent elements. Due to the
randomness of the absent data, the attributes and structure
of the graph often fail to fully match, leading to mutual
interference during message passing in GNNs. T2GNN [24]
addresses this challenge by utilizing a attributes teacher and
a structure teacher to independently model attributes and
graph structure, distilling the information into a student model.
UGCL [25] employs a two-layer MLP for feature reconstruc-
tion and PPNP for structure reconstruction, optimized with
a dual contrastive loss to align node representations from
both pathways. D2PT [14] completes the missing attributes
through long-range propagation, then generates a global graph
structure based on the completed attributes, effectively passing
information to stray nodes.

Despite significant progress in the areas of attribute im-
putation, structure learning, and incomplete graph learning,
these approaches depend on utilizing reliable components
in graph structure or attributes to purify unreliable compo-
nents. However, when unreliable information exists in reliable
components, the performance of these methods tends to be
suboptimal. To bridge this gap, we propose RENA, a method
specifically designed to tackle the LGNA task by leveraging
reliable components to dilute unreliable ones.

III. PRELIMINARIES

To formulate the LGNA task, we first define ideal graph data
for semi-supervised node classification under ideal conditions.

Definition 1 (Ideal graph data): We consider an ideal graph
as G* = (V, &%, A%, X*), where V = {vy,--- ,v,} is the node
set with size n, £* is the edge set, A* € {0,1}"*" is the
binary adjacency matrix (where A*;; = 1 means v; and v; are
connected and vice versa) and X* € R”*? is the attributes
matrix (where X*; is d-dimensional attributes vector of node
v;). The node labels are represented by a label matrix Y &
R™*¢ where c is the number of classes.

It is crucial to acknowledge that ideal graph data represents
an optimal setting for graph learning. In real-world scenarios,
the graph data used for model training usually contain both

noisy and absent data. Specifically, the structure can contain
noisy edges and some dimensions of attributes are absent,
resulting in misleading and incomplete information for graph
learning. Based on the above findings, the GNA data can be
described as follows:

Definition 2 (GNA data): Let G = (V,E,A,X) denote a
graph with noisy structure and absent attributes, where £ =
E*UET and A = A* + AT, Here, £* is the ideal edge set
and £ denotes the noisy edge set, AT denote the adjacency
matrix induced by £1. The absent attribute dimensions are
represented by a mask matrix M € {0,1}"*¢ with 0 denotes
the absent dimensions. The absent node attributes are denoted
by X =M © X*.

In the LGNA task, only the labels of a small fraction of
nodes Vi C V are available for model training, and the goal
in the inference phase is to predict the labels of unlabeled
nodes Vy C V, wrt VyNVp = 0 and Vy UV = V. We
denote the training labels as Y; € R™*¢, where n;, = |V |
is the number of training nodes.

IV. METHODOLOGY
A. Overview

Most prior works [14], [18], [20] focus on either attribute
imputation, structural noise, or incomplete graphs, but none
have simultaneously tackled both absent attributes and struc-
tural noise. To bridge this gap, we propose a method called
RENA, designed to dilute the impact of unreliable information.
Figure 3 illustrates the overall workflow of RENA, which con-
sists of two key components: Multi-View Structure Dilution
(MSD) and Attributes Reconstruct Dilution (ARD). In MSD,
we randomly sample a large number of unconnected node
pairs and a smaller number of connected pairs to construct
multiple structural views as supervision signals for structure
learning, decreasing the proportion of connected node pairs,
and thereby diluting the influence of noisy edges on structure
learning. Next, in ARD, we introduce a graph autoencoder
framework that assigns different weights to observed attributes
and imputed attributes during attribute reconstruction, aiming
to dilute the influence of imputation noise. Finally, we fine-
tune the encoder with labels for downstream tasks.

B. Multi-View Structure Dilution

In the LGNA task, we model the graph structure using
observed node attributes, rather than those after message
passing [14]. The reason is that if these absent attributes
aggregate information from irrelevant neighbors through the
noisy structure, the observed attributes can therefore introduce
noise, making it more difficult to model the graph structure
correctly. Specifically, we estimate the edge weight between
any node pair (u,v) as Eq. (1):

1 m
w = 3 wy Wi v )y 1
a m;cos(w O Xy, W; O Xy) (1)

where W = [wy,--- ,w,,] € R¥™ represent m learnable
weight vectors, x, denotes the observed attributes of node
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Overview of the RENA framework, which is composed of two key components: Multi-View Structure Dilution (MSD) and Attributes Reconstruct

Dilution (ARD). In MSD, we randomly sample connected and unconnected node pairs to construct multiple structural views, diluting the impact of noisy
edges and guiding structure learning. In ARD, the decoder reconstructs attributes, assigning higher weights to observed attributes and lower weights to imputed
ones to dilute the imputation noise. Finally, a classifier is introduced, and both the encoder and classifier are fine-tuned with labels for downstream tasks.

u, @ represents the Hadamard product. A common approach
for supervising the learning of a,, is using connected node
pairs [30]. However, in noisy graph structures, connected
node pairs may be noisy edges, and if we use connected
node pairs, they would introduce bias into the learned graph
structure. In contrast, unconnected node pairs are assumed to
remain unconnected in noisy graph structures. Although some
unconnected node pairs represent latent edges that should
exist but were omitted due to data collection errors or other
factors, the overall impact of these latent edges is minimal
compared to the vast majority of truly unconnected node pairs,
given the inherent sparsity of the graph data. For example, in
the T-Finance dataset [31], the number of unconnected node
pairs is approximately 729 times larger than that of connected
node pairs. Even when considering all connected edges as
latent edges, truly unconnected edges still far outnumber these
latent edges. These assumptions are validated by experimental
results as discussed in Appendix A. Therefore, we focus on
leveraging a large set of reliable unconnected node pairs for
graph structural learning.

We randomly sample p unconnected node pairs as negative
samples to supervise the learning of a,:,, where u' and
v’ represent an unconnected node pair (u’, v’), the loss for
negative samples is defined as Eq. (2):

£BCE(au'v’7 eu"u’) = - log(l - U(au’v’ ))7 (2)

where the weight e/, between v’ and v’ is set to 0 because of
the absence of a connection, and o () is a non-linear activation.
If we only sample unconnected node pairs, the model will
run the risk of converging to a trivial solution by predicting
all edge weights as 0. To mitigate this, we randomly sample

q connected node pairs as positive samples to supervise the
learning of ay,~+, where u” and v” represent a connected
node pair (u”, v""), the loss for positive samples is calculated
as Eq. (3) :

£BCE(au”v”aeu”v”) = _IOg(U(au”v”))a (3)

where e~ = 1, which represents the weight between
connected nodes v and v”. The sampled edges {e, .} and
{ewryr } form a structure view S = {eyryr, €yrryr }. The loss
is optimized as Eq. (4) :

1
Ls= —E( Z Cur 108(Auy )+ (1 —€up) log(1—ayy)). (4)
eun €S

Owing to the presence of noise in the structure, the positive
samples sampled{e, .~} may contain noisy edges. To further
reduce the proportion of noisy edges in the structure view,
we repeatedly sample positive samples 71" times from the
connected node pairs to construct multiple structure views
(MSV), which is defined as Eq. (5):

MSV = {S, ..

Whel‘e SZ - {eu’U’7 e:Lu//,UN },

.7ST71,ST}7 (5)
1=1,...,T,

where T is the number of structural views, €', denotes the
positive samples drawn from the i-th random sampling, and
S; is the i-th structure view. Let » = p/q, where r is the
dilution ratio of unconnected node pairs to connected ones.
By increasing the value of r, we can decrease the proportion
of unreliable node pairs in a structural view, thereby diluting



the impact of noisy edges on structural learning. The structure
learning loss is optimized by minimizing Eq. (6):

L T
Lysv = T ; Ls,. 6)

After structure learning, the learned similarity between node
pairs is utilized to filter noisy edges. We define A? = ay, in
Eq.(1) and A® is the similarity-based adjacency matrix. The
final optimized graph structure A is defined by (7), where the
threshold is a filter parameter.

A { 1 if AS + A,, > threshold
Auv = 0

otherwise
Algorithm 1 RENA: Dilution of Unreliable Information

Imput: G = (V,&,A,X): A graph with noisy structure and
absent attributes, g: Number of connected node pairs, r: Dilution
ratio, T": Number of views, gg: Encoder, gp: Decoder, f: Linear
classifier, Mepoch: Number of training epochs, W: Learnable
weight vector. .
Output: Predicted label Y
: // Step 1: Multi-View Structure Dilution (MSD)
: Sample p = r X g unconnected node pairs randomly
for i =1to T do
Sample g connected node pairs
Construct structure view &;
: end for
for e =1 to nepocn do
Compute a., for any two nodes u and v using Eq. (1)
Train W by minimizing Eq. (6)
. end for
: Obtain A using Eq. (7)
: /I Step 2: Attributes Reconstruct Dilution (ARD)
: Obtain X using Eq. (8)
:for e=1 t0 Mepoch do
Obtain X based on Eq.(9)
Train gg and gp by minimizing Eq. (10)
: end for
: // Step 3: Fine-Tuning
: for e =1 10 nepocn do
Predict Y based on Eq. (11) and (12)
Fine-tune gg and f by minimizing Eq. (13)
: end for
: return Y

)
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C. Attributes Reconstruct Dilution

An intuitive approach to handling absent attributes is
through imputation. However, both classical and recent im-
putation methods are prone to introducing unreliable infor-
mation when the structure contains noisy edges. Classical
imputation methods, such as zero or mean imputation [32],
k-nearest neighbor [33], and SVD matrix completion [34],
all of which can introduce irrelevant information [21]. Recent
advancements utilize graph structural information [20]-[22] to
impute absent attributes or maximize the mutual information
between structure and the attributes [23]. However, when the
graph structure contains noisy edges, the imputed attributes
would inevitably collect irrelevant information from its noisy
neighbors. This unreliable information propagates through the
graph structure, further affecting the embedding of observed

node attributes. Therefore, instead of designing an imputation
method, our goal is to mitigate the impact of unreliable
information introduced by imputation on observed attributes.
To this end, we apply a graph autoencoder [35] assigning a
higher weight to observed attributes during the reconstruction
process. This ensures that the restored node attributes primarily
reflect reliable observed attributes, thereby mitigating the
influence of imputation noise. Firstly, we impute the absent
attributes using the k-Nearest Neighbors mean as Eq. (8) :

yi' — % ZuEN,;,_,» Xuj
J Xij

if X;; is absent
otherwise

)

where N; ; represents top-K nearest nodes to node %, whose
7-th dimension is not absent. The distance is computed using
the Euclidean distance on the observed attributes. Then, a
graph autoencoder is applied to reconstructed attributes:

X = gD(Z7 A)v Z= gE(Xv A)a (9)

where gp and gp are GNN-based encoder and decoder,
respectively. Z is the node embedding in the latent space. X
is the input of gg, of which the absent parts are imputed as
Eq.(8). A is the adjacency matrix as Eq.(7), and X represents
the reconstructed attributes, i.e. the output of gp. The loss for
attributes reconstruct dilution is demonstrated as Eq. (10):

2
)
(10
where A1 > ), the terms “obs” and “imp” represent the
indices of the observed and imputed attributes, respectively.
The attribute reconstruction dilution method is self-
supervised and lacks label information. To address this, we
add a linear classifier after the encoder and fine-tune its
parameters using label information. Let f represent the linear
classifier and CE be the cross-entropy loss. The fine-tuning
process is then formulated as Eq. (11) to Eq. (13), where
Y, = {y;}f, is the groundtruth labels for training nodes,
and Y = {9}, is the predicted labels. The overall training
algorithm is summarized in Algorithm 1.

1

_ N 2 — N
ERec = ()\1 HXobs - Xobs + >\2 HXimp - Ximp

Nitrain

Z=gp(X,A), (11)
Y = f(2), (12)
Leg == yilog(i)- (13)
=1
TABLE 1

STATISTICS OF DATASETS

Datasets ~ Nodes Edges Attributes  Classes

Amazon 11,944 4,398,392 25 2
T-Finance 39,357 21,222,543 10 2

YelpChi 45,954 3,846,979 32 2




TABLE 11

PERFORMANCE IN THE LGNA TASK. THE BEST PERFORMANCE IS SHOWN IN
. “O0OM” MEANS OUT-OF-MEMORY.

, AND THE SECOND RUNNERS ARE SHOWN IN

Method Dataset Amazon T-Finance YelpChi

Metric F1-macro AUC GMean Fl-macro AUC GMean Fl-macro AUC GMean

GCN 0.6388 0.7851 0.5970 0.7138 0.8138 0.5543 0.5341 0.5668 0.4742

GAT 0.5867 0.5582 0.5135 0.6121 0.5919  0.4442 0.5075 0.5205 0.1833

GraphSAGE 0.7375 0.84.52 0.6617 0.7918 0.8587 0.6495 0.5756 0.6614 0.5241

Baselines ASD-VAE 0.6676 0.8028 0.4758 OOM OOM OOM OOM OOM OOM
PCFI 0.4751 0.7911 0.0000 OOM OOM OOM 0.5470 0.5760  0.5243

SUBLIME 0.4750 0.4251 0.0000 OOM OOM OOM OOM OOM OOM

DPT 0.5980 0.9074 0.8121 0.6401 0.8968 0.6421 0.2695 0.6429 0.5139

D2PT 0.6114 0.8995 0.7547 0.4311 0.8389  0.6187 0.2872 0.6634 0.3578

T2GNN 0.7180 0.8648 0.7843 0.8090 0.9091 0.7805 0.6818 0.8290  0.7521

GDN 0.8085 0.8881 0.7586 0.7185 0.9124  0.5797 0.6234 0.7421 0.6389

GHRN 0.7778 0.9003 0.8300 0.7382 0.8853 0.8088 0.5245 0.5956 0.5624

PMP 0.8493 0.9343 0.8082 0.7219 0.7320  0.6744 0.6200 0.7233 0.6335

Ours RENA 0.8639 0.9583 0.8980 0.8636 0.9429  0.8823 0.7004 0.8296  0.7403

V. EXPERIMENTS

In this section, we validate the effectiveness of RENA in
LGNA to address the following research questions:

« RQ1: How does RENA perform in comparison to state-
of-the-art methods in the LGNA task?

e« RQ2: Does RENA achieve superior performance over
state-of-the-art methods in the LGI task? '

« RQ3: How do the key components impact the perfor-
mance of RENA?

« RQ4: How do different hyperparameter settings influence
the performance of RENA?

A. Experimental Setup

1) Datasets.: We adopt three fraud datasets for evaluation.
The Amazon dataset [36] includes product reviews under the
Musical Instrument category. The nodes in the Amazon dataset
represent users with 25-dimensional attributes. The edges
represent connections between two users, such as reviewing
the same product at least once, having at least one instance
of the same star rating within one week, or sharing top-5%
mutual review TF-IDF similarities.

The YelpChi dataset [37] includes hotel and restaurant
reviews, which are filtered as spam and recommended as legiti-
mate by Yelp. The nodes present reviews with 32-dimensional
attributes. The edges represent connections between two re-
views, such as those posted by the same user, under the same
product, or posted in the same month under the same product.

The T-Finance dataset [31] aims to find the anomaly
accounts in transaction networks. The nodes are unique
anonymized accounts with 10-dimensional attributes related to
registration days, logging activities, and interaction frequency.
The edges in the graph represent two accounts that have trans-
action records. Human experts annotate nodes as anomalies
if they fall into categories like fraud, money laundering, and
online gambling. For Amazon and YelpChi datasets, we treat

IRENA can also effectively handle LGA and LGN tasks; however, due to
space constraints, we validate its effectiveness on the more complex LGI task.

different types of edges as a single type for processing. More
statistics are shown in Table I.

2) Compared Methods: We evaluated our approach against
five groups of baseline models: (1) traditional GNNs, such as
GCN [9], GAT [10], and GraphSAGE [11]; (2) two models for
attribute imputation, namely ASD-VAE [20] and PCFI [27];
(3) a model for structure learning, SUBLIME [18]; (4) three
GNNs designed for incomplete graphs, including D2PT [14],
DPT [14], and T2GNN [24]; and (5) three methods designed
for fraud detection, including GDN [38], GHRN [39], PMP
[40]. Comprehensive details can be found in Appendix B.

3) Experimental Settings: For all methods, nodes are ran-
domly split into training, validation, and test sets in a 40%,
20%, and 40% ratio. Each experiment is repeated with five
random seeds, and the average performance is reported. To
simulate real-world noise, we randomly sample 30% of the
number of original edges from the unconnected pairs, add
connections for each sampled pair to form noisy edges, and
mask 30% of the attributes for each node. For fair comparison,
all baselines are implemented using their official code and
original configurations. RENA employs a two-layer GAT with
256 hidden units for both the encoder and decoder and is
optimized using the Adam [41] optimizer, with a learning
rate of 0.005, a weight decay of 0.0005. And the number of
learnable weight vectors is m = 2. For all methods, we save
the model according to the best F1 score on the validation set
as [31]. More details can be found in Appendix C.

4) Implementation: RENA is implemented in PyTorch
2.3.0 with Python 3.9. All experiments are conducted on an
Ubuntu 22.04.4 LTS server with 72 cores, 512 GB of RAM,
and an NVIDIA A100 GPU(80 GB).

5) Metrics: We choose three widely used metrics to mea-
sure the performance of all the methods, namely F1-macro,
AUC [42], and GMean. Fl-macro is the unweighted mean of
the F1-score of each class, which neglects the imbalance ratio
between normal and anomaly labels. AUC is the area under
the ROC Curve. GMean calculates the geometric mean of the



TABLE III

PERFORMANCE IN INCOMPLETE GRAPHS. THE BEST PERFORMANCE IS SHOWN IN
. “O0OM” MEANS OUT-OF-MEMORY.

, AND THE SECOND RUNNERS ARE SHOWN IN

Method Dataset Amazon T-Finance YelpChi

Metric F1-macro AUC GMean Fl-macro AUC GMean Fl-macro AUC GMean

GCN 0.6961 0.8290  0.6358 0.7906 0.8890  0.7212 0.5479 0.5777 0.4978

GAT 0.6262 0.6095 0.5030 0.5881 0.6437 0.4199 0.5364 0.5584  0.3800

GraphSAGE 0.7359 0.7899  0.6270 0.8031 0.8693 0.7306 0.5747 0.6617 0.5224

Baselines ASD-VAE 0.6644 0.7998 0.1099 OOM OOM OOM OOM OOM OOM
PCFI 0.5704 0.8182  0.7189 OOM OOM OOM 0.5725 0.6150  0.5659

SUBLIME 0.4750 0.4522  0.0000 OOM OOM OOM OOM OOM OOM

DPT 0.5990 0.9081 0.8246 0.6898 0.9073 0.8033 0.1990 0.5710  0.4522

D2PT 0.5636 0.8798 0.7633 0.6988 0.9085 0.8055 0.2298 0.5945 0.5507

T2GNN 0.7512 0.8594  0.7450 0.8706 0.9320 0.8776 0.7114 0.8281 0.7621

GDN 0.8130 0.8589  0.7448 0.7485 0.8997 0.6394 0.6362 0.7829  0.6908

GHRN 0.7813 0.9072  0.8329 0.8088 0.9055 0.8356 0.5189 0.5922  0.5637

PMP 0.8569 0.9364  0.8357 0.6512 0.6475 0.5761 0.5810 0.7202  0.5046

Ours RENA 0.8394 0.9535  0.8952 0.8621 0.9473  0.8892 0.6913 0.8322 0.7574

True Positive Rate (TPR) and True Negative Rate (TNR).
B. Performance on LGNA (RQI)

To answer RQ1, we conducted comparisons against all
baselines on the three datasets, as summarized in Table II.
We observe that: (a) RENA outperforms all baselines over
all evaluation metrics on Amazon and T-Finance datasets,
and comparable performance on the YelpChi dataset. This is
because RENA supervises the learning of graph structure by
focusing on unconnected node pairs, and diluting the influ-
ence of connected node pairs on the learned graph structure.
Additionally, RENA effectively dilutes the impact of impu-
tation noise on observed attributes by reweighing observed
and imputed attributes during the reconstruction process; (b)
Methods designed to handle incomplete graphs, such as D2PT,
DPT, and T2GNN, generally outperform those focused solely
on absent attributes or structural noise across all metrics on
the Amazon dataset. These methods typically rely on either a
reliable structure or attributes to optimize the model. When
both attributes are absent and structures are noisy, neither
provides reliable information; (c) DPT outperforms D2PT on
most metrics in both the Amazon and T-Finance datasets.
This is likely because D2PT uses long-range information to
impute attributes, which are then used to construct the global
graph structure. However, when the structure contains noise, it
aggregates irrelevant neighborhood information, thus affecting
the observed attributes and the modeling of the graph structure.

C. Performance on LGI (RQ2)

To answer RQ2, we evaluated our method in the LGI task,
where both the structure and attributes are absent. Specifically,
we randomly masked 30% of edges and attributes for each
node to create incomplete graphs like [24]. Table III reports
the results, and we have the following findings: (a) Although
RENA is specifically tailored for the LGNA task, it achieves
state-of-the-art or comparable performance, demonstrating its
generalizability to LGI tasks. This generalizability stems from

the ability to adjust the dilution ratio r according to the
characteristics of the graph structure in different tasks. For
example, in the LGI task, where some edges in the graph
are absent, connected node pairs are more reliable, while
the unconnected ones are unreliable. We can increase the
proportion of connected node pairs to dilute the influence
of unconnected node pairs on the learned structure. (b) In
contrast, DPT, D2PT and T2GNN cannot adjust their graph
structure optimization methods based on the characteristics of
graph structures specific to tasks, limiting their generalizability
to handle different tasks. As shown in Table III, DPT, D2PT,
and T2GNN exhibit performance differences between the LGI
and LGNA tasks in the T-Finance and YelpChi datasets.

D. Ablation Study (RQ3)

To answer RQ3, we verify the contributions of the key
components in RENA: MSD and ARD. To verify MSD, we
replace the optimized structure A with the original noisy
structure A (NS) or the similarity-based structure A® (LS),
respectively, and compare the results with our method. Figure
4(a) shows the results and we have the following findings: (a)
RENA achieved the best performance compared with the two
variants. The reason is that the similarity of noisy edges in
A’ is expected to be estimated lower than ideal edges so that
noisy edges can be filtered out. (b) Replacing the optimized
structure with the original noisy structure results in less
performance degradation than the similarity-based structure,
as the computed similarity is mainly used for filtering noisy
edges rather than recovering the full structure.

To validate the dilution effect of ARD on imputation noise,
we conducted experiments under different ratios of A\; to As.
The results in Figure 4(b) demonstrate better performance as
the ratio of \; to Ay exceeds 1. This is because attribute impu-
tation introduces unreliable information, propagating through
the structure and weakening the embedding of the observed
node attributes. When ) is larger, the model focuses more on
the observed attributes, thus diluting the impact of imputation
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Fig. 5. Sensitivity analysis of r, T, threshold, and ratios of unconnected to connected node pairs on Amazon and T-Finance datasets.

noise on the observed attributes. We further validate the
effectiveness of reweighing observed and imputed attributes
in ARD across different imputation methods, with results and
additional analysis provided in the AppendixD.

E. Sensitivity Analysis (RQ4)

To answer RQ4, we further evaluate the sensitivity of RENA
from four aspects: dilution ratio r, which is the ratio of
unconnected node pairs to connected node pairs in a structural
view, number of structural views 7', threshold, and the ratio
of sampled connected node pairs p. Due to limited space, we
only report the results on the Amazon and T-Finance datasets,
as shown in Figure 52. Other datasets demonstrate similar
sensitivity patterns.

Figure 5(a) shows the results of dilution ratio . From the
results, we can draw the following conclusions: (a) Although
there may be noisy edges in the structural view, increasing
the dilution ratio can reduce the impact of noisy edges on
model performance. (b) A larger ratio leads to a significant
increase in unconnected node pairs compared to connected
ones, thereby impairing the ability of the model to accurately
learn the weights of the edges.

Figure 5(b) shows the results of 7. The results indicate
that when T is set too low (for example, below 20 in the
Amazon and T-Finance datasets), the number of connected
node pairs is inadequate to effectively guide the model to learn
edge weights. In contrast, when 7' exceeds 20, more noisy
edges appear, leading to performance degradation. Figure 5(c)
demonstrates that the best performance is achieved when the
threshold is 1.4 on amazon and T-Finance, with performance
degradation occurring when the threshold is either larger or
smaller than 1.4. This is because when the threshold is set

20nly AUC and G-Mean are reported, as the relatively low F1-score impairs
the clarity of joint visualization.

below 1.4, noisy edges remain in the optimized structure,
whereas when the threshold exceeds 1.4, some reliable edges
are filtered out, both leading to decreased model performance.
Figures 5(d) shows the impact of the ratio of sampled node
pairs. We observed that the model reaches optimal perfor-
mance at a ratio of 0.8 on Amazon and at a ratio of 0.4 on
T-Finance. When the ratio exceeds 0.8 on Amazon or 0.4 on T-
Finance, the sampled edges contain more noisy edges, whereas
when the ratio is lower than 0.4, the number of sampled edges
is insufficient to effectively supervise model training.

VI. CONCLUSION

In this work, we present the problem of graph learning
with noisy structure and absent attributes (a.k.a LGNA). Our
proposed approach, RENA, mitigates the impact of unreliable
information by utilizing more reliable unconnected node pairs
and observed attributes as supervision signals. A large number
of unconnected node pairs and a small set of connected
node pairs are sampled to create multiple structural views to
supervise the graph structure learning. Then, a graph autoen-
coder is employed to reconstruct node attributes, with higher
weights assigned to observed attributes. Finally, the encoder
is fine-tuned with labels for downstream tasks. Extensive
experiments validate the effectiveness of RENA in both LGNA
and incomplete graph learning tasks.
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APPENDIX

A. Details About Sampling Latent Edges

To validate our hypothesis that latent edges have a min-
imal impact on graph learning, we designed the following
experiment. Specifically, we add 10% and 30% of connected
pairs to the unconnected set, viewing them as latent edges
with potential semantic relationships, and then sampled from
this unconnected set to construct MSV. The results are shown
in Table V, which validates our hypothesis. This is due to
the significantly smaller number of these latent edges com-
pared to the truly unconnected node pairs, resulting in a low
probability of sampling these latent edges and, consequently,
their minimal influence on graph learning. For example, when
considering 30% of the connected node pairs as latent edges,
the sampling probabilities of these latent edges in the Amazon,
T-Finance, and Yelp datasets are only 1.94%, 0.84%, and
0.11%, respectively.

TABLE V
THE IMPACT OF DIFFERENT LATENT EDGES RATIO ON GRAPH LEARNING

Rate Amazon T-Finance YelpChi

F1 AUC F1 AUC F1 AUC
0%  84.69 9354 8487 9356 69.73 8255
10% 8444 9400 8470 92.62 6947 82.04
30% 8287 9378 85.13 9328 69.77 82.15

B. Baselines Information

In this section, we provide a brief overview of the baseline
methods used in our experiments.

e GCN [9], GAT [10] and GraphSAGE [10] are three
traditional GNNs.

« SUBLIME [18] fuses incomplete attributes and a com-
plete structure in a shared latent space, using decoupling
to recover missing attributes.

o ASD-VAE [20] combines incomplete attributes and a
complete structure within a shared latent space, utilizing
a decoupling mechanism to restore missing attributes.

« PCFI [27] employs both intra-channel and inter-channel
strategies to effectively impute missing attributes.

o D2PT [14] utilizes long-range propagation and constructs
a global graph structure to tackle the incomplete graph.

o DPT [14], a variant of D2PT, focuses solely on long-
distance propagation for efficient message passing.

e« T2GNN [24] employs attribute and structure teachers to
collaboratively guide the learning of the student model.

o« GDN [38] effectively addresses anomaly detection by
dynamically adjusting to structural distribution shifts.

o GHRN [39] prune inter-class edges by emphasizing and
delineating the high-frequency components of the graph.

« PMP [40] adaptively aggregates information from het-
erophilic and homophilic neighbors.

C. Hyperparameters

All hyperparameters are tuned based on the F1 score of
the validation set. For RENA, the parameter ¢, is tuned
from {0.2,0.4,0.6,0.8,1.0}, the parameter r, is tuned from
{1,10,20,30,40} and T, is tuned from {1, 10,20, 30,40}.
The threshold used to generate optimized structure is tuned
from {1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7}. We fix the value of
A2 to 1, and tuned the value of A; from {1, 2, 3, 4}. A 2-
layer GAT is deployed as graph encoder and decoder, whose
number of heads is tuned from {16, 32}.

D. Effectiveness of ARD and Theoretical Analysis

We conducted experiments with three different imputation
methods to verify that reweighting observed and imputed
attributes in ARD effectively dilutes the impact of imputation
noise. The results in Table IV demonstrate that our reweight-
ing strategy outperforms assigning equal weights. To have a
deeper insights, we analyze the gradient of Lge. W.rLL. X:

o (v v P
% _ TNtrain X7’ XU ) lf X’L] € Xobs7
ax ) 2x (v ) . ) |

a2 (X — X ), if Xij € Xy

Setting A; > Ag increases the gradient from the observed
attributes, making the model focus more on reconstructing
them and thus reducing imputation noise.

TABLE IV
PERFORMANCE UNDER DIFFERENT RATIOS OF OBSERVED TO IMPUTED ATTRIBUTES. THE BEST PERFORMANCE IS SHOWN IN BOLDED. “OBS : IMP”
REFERS TO THE WEIGHT RATIO OF OBSERVED ATTRIBUTES TO IMPUTED ATTRIBUTES DURING RECONSTRUCTION.

Imputation Ratio Amazon T-Finance YelpChi

Obs:Imp Fl-macro AUC GMean Fl-macro AUC GMean Fl-macro AUC GMean

1:1 0.8318 0.9415  0.8718 0.8437 0.9330 0.8797 0.6016 0.7310  0.6620

2:1 0.8344 0.9491  0.8782 0.8415 0.9359  0.8787 0.6180 0.7333  0.6688

Zero 3:1 0.8392 0.9451  0.8740 0.8422 0.9376  0.8792 0.6193 0.7275  0.6424

4:1 0.8344 0.9440  0.8690 0.8442 0.9365  0.8804 0.6203 0.7270  0.6582

1:1 0.8280 0.9425  0.8721 0.8463 0.9326  0.8717 0.6883 0.8113  0.7267

2:1 0.8149 0.9470  0.8846 0.8481 0.9382  0.8818 0.6867 0.8113  0.7295

Mean 3:1 0.8163 0.9464  0.8800 0.8532 0.9386  0.8803 0.6874 0.8140  0.7331
4:1 0.8164 0.9481  0.8830 0.8559 0.9389  0.8800 0.6890 0.8142  0.7370

1:1 0.8305 0.9509  0.8767 0.8502 0.9340  0.8792 0.6618 0.7830  0.7109

2:1 0.8262 09516  0.8825 0.8556 0.9333  0.8778 0.6615 0.7785  0.7090

Long_Range 3:1 0.8347 0.9527  0.8846 0.8477 0.9345  0.8821 0.6677 0.7868  0.7126
4:1 0.8268 0.9534  0.8851 0.8459 0.9346  0.8806 0.6632 0.7845  0.7117
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