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Abstract. Graph invariant learning aims to acquire invariant node rep-
resentations across various environments, achieving substantial success
in addressing Out-of-Distribution (OOD) generalization for graph learn-
ing tasks. As obtaining environment splits on graphs is typically costly,
most graph invariant learning methods heavily depend on inferring the
underlying environments to learn invariant node representations. Due to
the high heterogeneity of graph data without explicit source labels, ex-
isting environment inference methods cannot simultaneously satisfy the
requirements of diversity and similarity. To address this challenge, we
propose an approach called sOft environment inFerence with Test-timE
adaptatioN, abbreviated as OFTEN, which enables us to perform graph
invariant learning without any predefined environment split or partition
information. The intuition is to enhance the diversity among environ-
ments while preserving the original graph topology. Extensive experi-
ments on several graph OOD benchmarks demonstrate the consistent
superiority of OFTEN across all settings.
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1 Introduction

The success of GNNs with empirical risk minimization (ERM) relies on the as-
sumption that the testing and training data are identically drawn from the same
distribution. However, distribution shifts [9] between testing and training data
are usually inevitable due to data selection biases or unobserved confounders [4]
that widely exist in real data. Under such circumstances, GNNs with ERM usu-
ally suffer from poor generalization performance due to the greedy exploitation
of correlations among the training data, which are not stable under distribution
shifts. Training a GNN algorithm with out-of-distribution (OOD) generalization
ability is of paramount significance, especially in high-stake applications such as
medical diagnosis [17] and financial analysis [15, 7].
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Graph invariant learning [10, 23] is one of the mainstream methods to solve
the OOD generalization problem. The main idea is to exploit the causally in-
variant correlations(rather than varying spurious correlations) across multiple
training environments, resulting in OOD optimal predictors. The effectiveness
of such methods relies heavily on the quality of the environment splits. However,
real-world graph data are frequently assembled by merging data from multiple
sources without explicit source labels. The resultant unobserved heterogeneity
makes it harder to determine which environment the sample belongs to.x
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Fig. 1. Demonstration of Diversity & Similarity principles. The node label is based on
the top/middle/bottom node of a house-like motif and the color is a spurious feature.
The training environments 1 and 2 should be diverse in node colors but similar to the
aggregated colors of the test set (nodes with blue edges). The dotted red circles include
bottom nodes in a house connecting to a base node so they belong to the same class.
Their aggregated colors remain invariant across the training and testing set.

Several environment inference methods [3, 13, 12] have been proposed to ad-
dress the challenge of the unknown training environment. The primary idea
behind these methods is to jointly optimize environment partition and invariant
prediction. This approach can be easily applied to graph-level tasks like graph
classification, where each graph is treated independently. In contrast, node-level
OOD tasks cannot employ the same environment split solution since each node
depends on its neighbors. For inferring node-level environments, EERM [20] is
a pioneer work that uses multiple context explorers for graph structure editing,
creating multiple virtual training environments.

The principles for designing environment splits and representation learning
can be summarized as Diversity & Similarity, with Diversity pertaining to en-
vironment splits and Similarity to representation learning. Environmental splits
should exhibit sufficient diversity to mitigate the adverse effects of spurious cor-
relations. However, an exclusive pursuit of diversity may lead to deviations from
the target distribution. Therefore, the latent representation space should be de-
signed to be similar to the target embedding space for enhanced generalization.
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As illustrated in Fig. 1, node color serves as a spurious feature, and node la-
bel is based on the location of a house-like motif4. The individual node colors
vary across different environments to prevent spurious correlations, but the ag-
gregated node colors for the same location remain consistent to promote better
generalization. Generative OOD methods like EERM [20] achieve the Diversity
principle by training multiple context generators to maximize risk variance but
neglect the Similarity principle. In contrast, test-time adaptation methods like
FLOOD [14] focus on realizing the Similarity goal by designing a flexible en-
coder updated in a self-supervised manner during the inference phase to align
the latent feature space. However, the environments of FLOOD originate from
random augmentation and thus do not satisfy the Diversity principle.

To simultaneously fulfill the aforementioned two principles, we propose a
sOft environment inFerence approach with Test-timE adaptatioN (OFTEN) for
graph OOD generalization. Different from existing environment inference solu-
tions, we adopt a ’soft’ approach to estimate the environment label for each node.
Instead of assigning a scalar environment ID to each node, we train an assign-
ment vector that reflects the node’s involvement in each virtual environment.
The node assignment weights are optimized to maximally violate the invariant
principle for environment inference. Since nodes participate in all environments
with varying weights, the neighbor set of a node remains unaffected by the envi-
ronment split, overcoming the dependence challenge inherent in node-level graph
learning tasks. In this way, the Diversity principle is achieved in environmental
splits. For the Similarity principle, we regularize the model parameters during
the test phase by penalizing the distance between the invariant representations
of the training nodes and the target representations of the testing nodes.

2 Methodology

2.1 Problem Statement

We denote a graph as G = (V,X,A), where V = {v1, . . . , vN} is the set of nodes,
X ∈ RN×D denotes node features, and A ∈ {0, 1}N×N is an adjacency matrix
representing the connections between nodes. Note that N and D represent the
number of nodes and features, respectively. Besides, we denote the labels of the
node as Y ∈ {0, 1}N×C where C is the number of classes.

We focus on the node-level environment inference problem for the out-of-
distribution node classification, where the target is to learn an environment
assignment for each node in V. Typical environment inference methods infer a
scalar environment ID for each node. Different from them, our work treats the
environment label as an M -dimensional vector, where the i-th element indicates
the participation of the node in the i-th virtual environment. With these en-
vironment labels, the training nodes in Vtrain are re-weighted to construct M
virtual environments that maximally violate the invariant learning principle.

4 We adhere to the same labeling rule as in GOOD-CBAS [6].
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We illustrate the pipeline of OFTEN on an example graph in Fig. 2, which
consists of three parts: soft environment inference, graph invariant learning, and
test-time adaptation.
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Fig. 2. The framework of OFTEN on an example graph.

2.2 Soft Environment Inference

The target of environment inference is to improve the diversity of training sam-
ples to facilitate invariant node representation learning and avoid spurious cor-
relation. To achieve this, each node has a trainable assignment vector with each
element wv,e being the weight of v in the environment e. The environment e is
represented by normalized weighted node embeddings in Eq. (1).

He =

∑
v∈V wv,ehv∑
v∈V wv,e

, e ∈ E , (1)

where wv,e denotes the weight of node v in the environment e that satisfies∑
e wv,e = 1. We = [w1,e, . . . , wN,e]

T collects all the node weights in the virtual
environment e.

The node weights W = [W1, . . . ,WM ] are trained to maximize the variance5

of all the environment representations and the Mean Pairwise Distance of all the
possible environment pairs in Eq. (2).

Lenv(W) = Var ({He1 , . . . ,HeM }) + 2

M(M − 1)

∑
i<j

||Hei −Hej ||2. (2)

For each virtual environment e, the message-passing process is manipulated
by We. The aggregation step in the environment e is re-weighted by We and

5 We compute the mean variance of each hidden dimension.



OFTEN: Graph Invariant Learning via Soft Environment Inference 5

the update step for each node v ∈ V in layer l can be described as Eq.(3), where
N (v) is the neighbor set of node v.

h(l)
v,e = UPD(l)

(
h(l−1)
v,e ,AGG(l)

({
wu,eh

(l−1)
u,e : u ∈ N (v)

}))
. (3)

The GNN with L layers are parameterized by θ and the obtained node em-
bedding from the environment e is h(L)

v,e . In each virtual environment, θ is trained
to minimize the weighted cross-entropy loss in Eq. (4).

Re(θ) =
1

|V|
∑
v∈V

wv,eℓ
(
MLP(h(L)

v,e ),Yv

)
. (4)

OFTEN employs the invariant loss from VREx as Eq. (5) to minimize the
risk variance across all the environments. Lenv and Linv are optimized alternately
as detailed in Section 2.4.

Linv(θ) = Var ({R1(θ), . . . ,RM (θ)}) +
M∑
e=1

Re(θ). (5)

2.3 Test Time Adaptation

After environment inference and invariant learning, we obtain invariant represen-
tations of the training nodes Ztrain = fθ (Vtrain,A) and infer the representations
of testing nodes Ztest = fθ (Vtest,A). To mitigate the distribution shift between
the training distribution and testing distribution, we adopt Central Moment
Discrepancy as a regularizer during the test phase. The re-weighted node rep-
resentations from each virtual environment diag(We) · Ztrain are refined to be
close to the test distribution Ztest as shown in Eq. (6).

Lreg(θ) =
1

M

M∑
e=1

D (diag(We) · Ztrain,Ztest) , (6)

where the diag operator changes the N -dimensional column vector into an N×N
diagonal matrix and the Central Moment Discrepancy D is used to measure the
distance between two distributions Z1 and Z2 as defined in Eq.(7).

D (Z1,Z2) =
1

|b− a| ∥E(Z1)− E(Z2)∥2 +
K∑

k=2

1

|b− a|k ∥ck (Z1)− ck(Z2)∥2, (7)

where ck(Z) = E(Z − E(Z))k is k-th order moment and a, b denotes the joint
distribution support of the distributions (b − a = 1 in our work). In practice,
only a limited number of moments is usually included (K=5 in our work).

2.4 Overall Algorithm and Complexity Analysis

Given a set of training nodes Vtrain and a set of testing nodes Vtest, with the
GNNs initialized, we first train the node weights w.r.t. Eq. (2) for Ninit epochs.
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Then in the invariant learning loop of Nepoch epochs, environment inference
and invariant learning are optimized alternately. The node assignment weights
are optimized for Nsplit times and the GNN parameter θ is updated for once.
After that, the model parameter θ is refined for Ntest iterations to minimize the
Central Moment Discrepancy between training nodes and testing nodes. Finally,
the predictions of testing nodes are returned.

Consider a graph with N nodes and E edges, the average degree is d̄. GNN
with L layers compute embeddings in time and space O(NLd̄2). OFTEN es-
timates M virtual environments computations per update step (M for each
training environment) plus a prediction step. As the update step during the test
phase is similar to model training, the overall time complexity is linear to the
scale of the graph O(MNLd̄2).

3 Experiments

3.1 Experimental Setup

Datasets We adopt four node classification datasets from GOOD [6], a graph
out-of-distribution benchmark, to verify the environment inference ability of OF-
TEN. The statistics of the datasets are shown in Table 1.

Table 1. Statistics of datasets.

Dataset #Node #Edge #Class #Feat Domain

CBAS 700 3,962 4 4 Color
WebKB 617 1,138 5 1,703 University
Cora 19,793 126,842 70 8,710 Word/Degree
Arxiv 169,343 1,166,243 40 128 Time/Degree

Compared Methods We utilize OFTEN to generate virtual environments
for graph invariant learning methods (IRM [1], VREx [8]) and denote them as
IRM-OFTEN and VREx-OFTEN. We use EIIL [3] to generate environmental
splits for IRM and VREx. Besides, OFTEN is also applied on SRGNN [24] and
derives SRGNN-OFTEN to be compared with original SRGNN. Other compared
methods include robust optimization GroupDRO [16], domain generalization
DANN [5], DeepCoral [18], graph data augmentation Mixup [19], and graph
OOD methods (EERM [20], IS-GIB [22], INL [11], FLOOD [14]).

Implementation Details Our work is implemented in Pytorch 1.10.1 with
Python 3.8.17, and all the experiments are conducted on a Ubuntu 22.04.2 server
with 72 cores and 512GB memory. IRM, VREx, GroupDRO, Mixup, SRGNN,
EERM, DANN, and DeepCoral are based on the implementation of GOOD [6].
IS-GIB, INL, and FLOOD are based on the source code provided by the authors.
We report the average value of 5 runs. For our work, we adopt GCN as the
backbone, the same settings as GOOD does, for a fair comparison.
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Hyper-parameter Settings The parameters of GCNs are optimized with
Adam optimizer with learning rate lr=1e-3. Hyper-parameter tuning is con-
ducted using grid search for most methods. In our work, Ninit = 15, Nsplit = 5,
Ntest = 5, d = 300. For all situations unless specifically mentioned, M = 8 for
covariate shift, M = 2 for concept shift, and α = 1e − 6 for both shifts. For
GOOD-CBAS and GOOD-WebKB, α = 1e − 4 for both covariate and concept
shifts. For GOOD-Cora with covariate shift on degree domain split, M = 10 and
α = 1e− 4. For GOOD-Cora with concept shift, α = 1e− 4.

Table 2. Performance Comparison of Node Classification under Covariate Shift

Dataset Cora Arxiv CBAS WebKB

Domain Word Degree Time Degree Color University

ERM 64.58±0.27 55.94±1.05 70.27±0.47 58.43±0.28 67.14±7.65 14.55±5.88
Mixup 64.43±0.24 56.22±0.79 70.91±0.24 56.83±0.28 71.43±1.17 20.90±2.45
GroupDRO 64.56±0.11 56.07±0.18 70.15±0.59 58.35±0.24 72.86±1.17 12.70±0.00
DeepCoral 64.30±0.75 55.90±0.25 70.73±0.19 58.57±0.13 72.38±2.93 17.19±3.74
DANN 64.75±0.20 56.15±0.40 70.42±0.29 58.39±0.15 75.71±0.00 20.87±3.20
EERM 62.88±0.01 56.54±0.09 OOM OOM 71.91±2.43 21.69±8.33
IS-GIB 65.23±0.46 54.16±0.48 70.45±0.31 57.64±0.18 74.29±0.90 12.70±1.01
INL 64.67±0.31 55.76±0.71 70.54±0.56 58.52±0.26 72.66±1.19 14.29±3.46
FLOOD 65.18±0.31 55.37±0.56 70.89±0.42 57.39±0.21 76.32±0.39 15.11±0.49

IRM 64.67±0.31 55.76±0.71 70.54±0.56 58.52±0.26 72.66±1.19 14.29±3.46
-OFTEN 64.87±0.44 56.59±0.63 71.24±0.33 58.99±0.17 77.62±0.67 19.21±2.81
VREx 64.34±0.25 56.36±0.14 70.38±0.02 58.33±0.33 61.43±2.02 9.26±0.75
-OFTEN 64.97±0.57 56.54±0.18 71.05±0.34 58.92±0.18 78.29±1.78 22.86±4.67
SRGNN 64.79±0.13 56.33±0.15 70.62±0.37 58.31±0.21 75.24±2.93 12.17±3.33
-OFTEN 65.30±0.36 56.51±0.59 71.15±0.22 58.91±0.17 78.86±1.67 16.98±1.79

3.2 Performance Comparison

We evaluate the performance of OFTEN on OOD node classification tasks. The
Accuracy scores are reported in Table 2. We have the following observations.

Firstly, OFTEN effectively conducts soft environment splits without any pro-
vided information. IRM-OFTEN, VREx-OFTEN, and SRGNN-OFTEN consis-
tently achieve better or comparable performance compared with models trained
with EIIL splits. In these soft splits, each node participates in various virtual en-
vironments with different weights, which are optimized to maximize the variance
and pairwise distance. Instead of assigning one node to a specific environment,
OFTEN avoids perturbing the original graph topology, resulting in improved
generalization performance.

Secondly, OFTEN demonstrates superior OOD generalization ability com-
pared to other graph OOD methods. EERM can construct multiple training en-
vironments and OFTEN outperforms EERM by aligning the latent space with
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the test distribution in the test-time adaptation. In contrast, EERM deploys
the invariant model without further adaptation. Notably, EERM achieves the
second-best performance in WebKB because the graph of WebKB is small and
sparse and context generators in EERM can provide more useful information for
OOD generalization.

(a) IRM under covariate shift (b) IRM under concept shift

(c) VREx under covariate shift (d) VREx under concept shift

Fig. 3. Ablation study of OFTEN. OFTEN\S replaces the soft splits with hard splits.
OFTEN\T removes the test-time adaptation. OFTEN\P randomizes the node weights.

3.3 Ablation Study

We evaluate the contributions of two key modules of OFTEN, namely soft en-
vironment inference and test-time adaptation, by replacing or removing each
module respectively. We report the ablation results in Fig. 3. The full model
OFTEN always achieves the best scores compared with the three variants, OF-
TEN\S, OFTEN\T, and OFTEN\P, indicating that each module is necessary
for OOD generalization.

OFTEN\S replaces the soft splits with hard splits and each node is assigned
to one virtual environment with the largest weight. The performance drop indi-
cates that soft splits are more benefical to invariant learning since they re-weight
the node features and do not change the topology. OFTEN\T removes the test-
time adaptation module thus affects the generalization ability of the invariant
GNN. OFTEN\P removes the Mean Pairwise Distance loss and randomizes the
node weights. The performance of OFTEN\P are the worst in most cases and
we can conclude that OFTEN learns meaningful soft environment splits from
the node weights trained to maximize the variance and distance.
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4 Related Work

Environment Inference for Invariant Learning. Out-of-Distribution (OOD)
generalization addresses the challenging setting where the testing distribution
is unknown and different from that of the training. Invariant learning meth-
ods, typified by invariant risk minimization(IRM, [1]), have shown promising
results in tackling OOD generalization problem. However, they rely on existing
environment splits. Recent works [3, 12] on environment inference learn invari-
ance without environment indexes where the dataset is assembled by merging
data from multiple environments. The methods mentioned above conduct envi-
ronment partition for current invariant learning models for out-of-distribution
generalization. Different from them, our major concern is the node-level envi-
ronment inference problem on graphs. The principle is applicable to graph-level
tasks since each graph is independent but the environment inference is more
complicated for node-level tasks due to the complex dependence of the nodes.

Out-of-distribution Generalization on Graphs. Distribution shifts on
graphs can appear in a variety of forms such as attributes and structures, mak-
ing it difficult to identify the invariance. Moreover, environment construction or
inference, which are often required by OOD methods on Euclidean data, can
be highly expensive to obtain for graphs due to the structural relationship of
the nodes. GIL [10], DIR [21], MoleOOD [23], and CIGA [2] investigate graph-
level tasks for OOD generalization. Different from them, we consider the OOD
problem of node-level tasks on graphs. EERM [20] and FLOOD [14] generate
environments from context generators and data augmentation respectively. Dif-
ferently, OFTEN learns an environment assignment vector for each node which
increases the diversity in a “soft” way. In contrast, INL assigns each node to one
environment in a “hard” way.

5 Conclusion

In this study, we investigated the issue of environment inference for graph invari-
ant learning and proposed a new solution, OFTEN, which performs environment
splits of graph-structured data for node classification tasks. Our framework aims
to develop an automatic environment split for graph invariant learning. By using
soft environment inference, OFTEN re-weighted node embeddings to maximize
the pairwise distance among virtual environments. To further adapt the invari-
ant model to the test distribution, OFTEN conducts test-time adaptation by
minimizing the discrepancy between the observed training and testing distribu-
tion. Our work demonstrates the possibility of performing invariant learning on
graph-structured data without any given environment partition information.
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