Explainable Graph-based Fraud Detection
via Neural Meta-graph Search
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What drives the model to make predictions?

How to develop a fraud detector giving
high-quality predictions and explanations
simultaneously?

Optimization:

min L, (0 (@), a), s.t. 0™ () = arg min Ly, (0, @)
a ' ()

_ _ L ==, v 1log py + (1 —yyp) log (1 — py
Our contributions: 2oev [Yologpo + (1 =yo) log (1 = po)]

1. Propose NGS to search the optimized Experiments

message passing graph structure.

Dataset | #Nodes (Fraud%) #Edges Relation  #Relations
UPU 175608 Two real-world graph-based
2. The meta-graphs offer explanations. Amaon | 104057 4 USU  35esas  fraud detection datasets Amazon
U-v-U 1,036,737  and YelpChi are adopted to
RUR 49,315 validate NGS’s performance.
YelpChi | 45,954 (14.5%) 3,846,979 ~R-TR 573,616
Methodol
gy Dataset | Amazon | YelpChi
Method  petric | Fi-macro AUC GMean | Fl-macro AUC GMean
T h e message as Si N SC h eme Of G N N . GCN 0.6571+0.0008  0.8189+0.0008  0.6629+0.0037 | 0.4963£0.0005  0.5504+0.0001  0.2143%0.0019
g p g . GAT 0.5390+0.0021  0.7426+0.0020  0.3081+0.0173 | 0.5228+0.0070  0.5519+0.0012  0.2921+0.0193
GraphSAGE | 0.8383£0.0109  0.9149+0.0077  0.8518+0.0077 | 0.5781+£0.0239  0.7409+£0.0034  0.6815+0.0049
( O) ( l +1) ( l) CARE-GNN | 0.8997+£0.0064  0.9482+0.0044  0.8982+0.0015 | 0.6052+0.0170  0.7748+0.0008  0.7071+0.0035
H — MLP X H — A r H . A Baselines ~ PC-GNN 0.8660+£0.0164  0.9642+£0.0035  0.8986+£0.0203 | 0.6192+0.0479  0.8104+£0.0057  0.7225+0.0166
- ’ - gg ) FRAUDRE | 0.8519+0.1055  0.9408+0.0052  0.8847+0.0280 | 0.6057+0.0381  0.7582+0.0041  0.6862+0.0128
AO-GNN' | 0.8921+0.0045  0.9640+£0.0020  0.9096+0.0105 | 0.7042+0.0051  0.8805+0.0008  0.8134:0.0232
h . . H2-FDetector | 0.8392+0.0000  0.9689+0.0000  0.9203+0.0000 | 0.6944:0.0000  0.8877+0.0000  0.81620.0000
U sem eta _g I'a p M ﬂ tO d escCri b ew h I1C h ProtGNN | 07351300112  0.8826+0.0106  0.7785+0.0126 | 0.5663 £0.0024  0.6004 £0.0056  0.4595 +£0.0196
DiffMG | 0.8826£0.0049  0.9290£0.0044  0.8855:0.0057 | 0.7316+0.0144  0.8799+0.0142  0.78730.0147
re | a t | on t h e messa ge |S p asse d a | on g W h en Ablation NGS\4 | 0.9234+0.0078  0.9692+0.0136  0.9191+0.0087 | 0.7604£0.0227  0.9009+0.0215  0.7981:0.0279
’ Ours NGS | 09228+0.0046 0.9736+0.0035 0.9218:+0.0042 | 0.7828+0.0055 0.9218+0.0032 0.8351:+0.0056

dealing with multi-relation graph A = {4,}|¥
5 srap { r}|,-=1 Compared with various baselines, NGS exceeding or

matching performance across all of them.

NGS
Explainability
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'y (b) YelpChi.
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No relation is involved;

We relax the discrete edge type selection to User attributes are the key to identifying fraudsters.

be continuous like DARTS.
. (). ..\ — P (afl)
fz,l (H ’*7{1,1) A;i,l ZA,&%J exp ((X;Al,)

Ref: Yuhui Ding, et al, KDD 2021. DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks.
Hanxiao Liu, et al, ICLR 2019. DARTS: Differentiable Architecture Search.

Yelpchi

relation is highly relevant to fraud detection;
Suggesting a typical default phenomenon: click farming.
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