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Background

Payment
• Cash, bank card, online money, etc.

• What if no enough money on hand?

Credit Payment
• Promise to pay for it later. 

• What if you fail to repay the money in-time?



Background

Defaulters
• Defaulters are those who could not pay the requirements within one month.

Task
• Financial Defaulter detection 

‒ To predict whether a user will fail to make required payments in the next month.

Data
• User behaviors on credit-payment service platform

‒ Payment transactions, log-in logs, etc.
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time

Default? User-level 
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Related Work

Financial Defaulter Detection
• Fraud

• Cash-out

• Money Laundering

Attributed Heterogeneous Information Network
• Node

‒ User, Merchant

• Link
‒ Fund Transfer, Trade

Please refer to [13, 19, 32] in our paper.



Challenges

Endogeny
• Users could be subjectively reluctant to afford 

when they raise a debt.

Adversary
• The criminals may deliberately construct 

complex behaviors to avoid regulation.

Accumulation
• May be impacted by upstream or down-stream 

neighbor enterprises.

The Reluctant User



Solutions

Endogeny
• Users could be subjectively reluctant to afford 

when they raise a debt.

Adversary
• The criminals may deliberately construct 

complex behaviors to avoid regulation.

Accumulation
• May be impacted by upstream or down-stream 

neighbor enterprises.

Accurate user profiling 
from multi-view factors

Multi-view Attributed Heterogeneous Information 
Network based financial DEfault useR detection

Impacts of neighbors

Fine-grained behavioral 
patterns among users
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Multi-view Attributed Heterogeneous Information Network

View
• Social

• Fund

• Device

Node
• User

• Merchant

Link
• Friend, family, workmate

• Transfer, trade

• Login



Statistical Analysis on Three Views

Observation:
• Users are more likely to be default when they have default neighbors.

• Different views have different impacts on users.

• Different relations have different impacts.



Meta-path on MAHIN

Intra-view meta-path

Cross-view meta-path



Meta-path based Path Encoder
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Importance of Views
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Model Training

Loss
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Dataset

Data

MAHIN



Compared Methods

GBDT[7]

• A scalable tree-based model for feature learning and classification task.

DeepForest[39, 42]

• A deep model based on decision trees.

HAN[33]

• A graph neural network with node-level and semantic-level attention.

• HANS2 extracts interactive features of a target user following the meta-paths 
defined in our paper. 

HACUD[13]

• A cash-out user detection method based on attributed heterogeneous 
information network.

• HACUDS2 extracts interactive features of a target user following the meta-
paths defined in our paper. 



Evaluation Metrics

AUC
• The area under the ROC curve

R@PN

• The Recall when Precision equals N



Main Results

Table 1 Performances of different methods on the dataset. The subscripts 

indicate the increasing value compared to GBDT.



Ablation Test

• MAHINDER\S removes social view and its corresponding meta-paths

• MAHINDER\D removes device view and its corresponding meta-paths

• MAHINDER\F removes fund view and its corresponding meta-paths

• MAHINDER\L removes link information and its corresponding attention module

• MAHINDER\EnAtt removes node and link attention mechanisms in path encoder

• MAHINDER\MpAtt removes attention mechanism modeling importance of views



Visualization

The fraud users have higher attention values 
on social and device views (e.g., UsU, UdU) 
and first-order neighbors.

The cash-out users have higher attention 
values on fund and social views (e.g., 
UfUsU, UfUsUfU) and high-order links.

The unintentional defaulters have 
higher attention value on themselves.
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Conclusion and Future work

Conclusion
• We construct a multi-view attributed heterogeneous information 

network for better user profiling.

• We propose a novel model named MAHINDER which is effective in 
financial defaulter detection. 

Future Work
• End-to-end model without pre-defined meta-paths

• Interpretability
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