
Pattern Recognition 90 (2019) 271–284

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

Grid-based DBSCAN: Indexing and inference

Thapana Boonchoo

a , b , Xiang Ao

a , b , ∗, Yang Liu

a , b , Weizhong Zhao

c , Fuzhen Zhuang

a , b ,
Qing He

a , b

a Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China
b University of Chinese Academy of Sciences, Beijing 10 0 049, China
c School of Computer, Central China Normal University, Wuhan, China and Hubei Key Laboratory of Artificial Intelligence and Smart Learning, Central China

Normal University, Wuhan, China

a r t i c l e i n f o

Article history:

Received 26 April 2018

Revised 3 December 2018

Accepted 24 January 2019

Available online 28 January 2019

Keywords:

Density-based clustering

Grid-based DBSCAN

Union-find algorithm

a b s t r a c t

DBSCAN is one of clustering algorithms which can report arbitrarily-shaped clusters and noises without

requiring the number of clusters as a parameter (unlike the other clustering algorithms, k -means, for ex-

ample). Because the running time of DBSCAN has quadratic order of growth, i.e. O (n 2), research studies

on improving its performance have been received a considerable amount of attention for decades. Grid-

based DBSCAN is a well-developed algorithm whose complexity is improved to O (n log n) in 2D space,

while requiring �(n 4/3) to solve when dimension ≥ 3. However, we find that Grid-based DBSCAN suffers

from two problems: neighbour explosion and redundancies in merging, which make the algorithms in-

feasible in high dimensional space. In this paper we first propose a novel algorithm called GDCF which

utilizes bitmap indexing to support efficient neighbour grid queries. Second, based on the concept of

union-find algorithm we devise a forest-like structure, called cluster forest, to alleviate the redundancies

in the merging. Moreover, we find that running the cluster forest in different orders can lead to a differ-

ent number of merging operations needed to perform in the merging step. We propose to perform the

merging step in a uniform random order to optimize the number of merging operations. However, for

high-density database, a bottleneck could be occurred, we further propose a low-density-first order to al-

leviate this bottleneck. The experiments resulted on both real-world and synthetic datasets demonstrate

that the proposed algorithm outperforms the state-of-the-art exact/approximate DBSCAN and suggests a

good scalability.

© 2019 Elsevier Ltd. All rights reserved.

1

d

s

v

g

s

t

c

e

a

p

l

(

t

b

g

c

[

D

i

n

t

r

n

M

m

d

h

0

. Introduction

Clustering which is widely used for data mining and knowledge

iscovery has been intensively studied for decades. In contrast to

upervised approaches, e.g., classification, clustering is an unsuper-

ised technique which does not rely on any prior knowledge or

round truth of the data. Specifically, it attempts to group objects

uch that the similarities among objects in the same clusters and

he differences between individual clusters are maximized. The

lustering plays a crucial role in the domain of pattern recognition,

.g. image analysis [1,2] , human behavior analysis [3] , document

nalysis [4] , etc [5] .

A variety of clustering methods [6–14] have been proposed to

erform clustering tasks. DBSCAN [9] (Density Based Spatial Clus-
∗ Corresponding author.

E-mail addresses: thapana@ict.ac.cn (T. Boonchoo), aoxiang@ict.ac.cn (X. Ao),

iuyang17z@ict.ac.cn (Y. Liu), zhaowz81@163.com (W. Zhao), zhuangfuzhen@ict.ac.cn

F. Zhuang), heqing@ict.ac.cn (Q. He).

s

w

j

c

g

ttps://doi.org/10.1016/j.patcog.2019.01.034

031-3203/© 2019 Elsevier Ltd. All rights reserved.
ering of Applications with Noise), as a representative density-

ased approach [6,9,15–17] , is one of the most widely used al-

orithms since it performs well in discovering arbitrarily-shaped

lusters and is robust to outliers (over methods such as k -means

14] which typically returns ball-like clusters). Many variants of

BSCAN can be found in the literature [15,16,18–27] . Consider-

ng Fig. 1 , first two database examples taken from the origi-

al paper of DBSCAN [9] contain four snake-shaped clusters and

hree arbitrary-shaped clusters with a number of noises, while the

ightmost database contains six clusters amid more complex

oises. Two parameters, namely ε (a positive real number) and

inPTS (a natural number), are required in DBSCAN. ε denotes the

aximum distance of one object to its neighbours, while MinPTS

efines a density threshold of a given object. In other words, con-

idering a d -dimensional object p , a d -ball area centered at object p

ith radius ε is considered as dense if it covers at least MinPTS ob-

ects. The objects within the d -ball area are included in the same

luster as the object p . Furthermore, clusters can be merged to-

ether if the centered objects can be added other clusters. The

https://doi.org/10.1016/j.patcog.2019.01.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.01.034&domain=pdf
mailto:thapana@ict.ac.cn
mailto:aoxiang@ict.ac.cn
mailto:liuyang17z@ict.ac.cn
mailto:zhaowz81@163.com
mailto:zhuangfuzhen@ict.ac.cn
mailto:heqing@ict.ac.cn
https://doi.org/10.1016/j.patcog.2019.01.034

272 T. Boonchoo, X. Ao and Y. Liu et al. / Pattern Recognition 90 (2019) 271–284

Fig. 1. 2D database examples.

fi

t

i

p

G

e

n

e

D

e

T

a

c

r

p

w

s

i

2

S

t

r

t

F

w

o

s

t

a

f

l

t

p

b

[

b

o

p

t

g

p

O

s

o

S

i

s

S

r

c

s
merging will be carried out to the fullest extent until no more

clusters can be merged. DBSCAN suffers from quadratic order of

growth since it needs to perform n ε-queries and cluster labeling

propagation for all the objects. However, even data indexing, such

as kd-tree [28] or r ∗-tree [29] is utilized to perform ε-queries, the

complexity of DBSCAN is still O (n 2) in the worst case. Research

effort s have been devoted to improving the efficiency of DBSCAN

since it requires a high complexity.

Hence, there are several kinds of improved algorithms in the

literature [19,30–38] . For example, [33] proposed a Grid-based

DBSCAN to improve the complexity of DBSCAN from O (n 2) to

O (n log n) for 2D data by exploiting the grid topology, and [35] ex-

tended the Grid-based DBSCAN to higher dimension, and further

proposed ρ−approximate which is an approximate algorithm for

DBSCAN. [31] proposed a novel graph-based indexing structure to

alleviate the bottleneck of neighbour search operations. Recently,

[30] assumed that any nearby objects should have similar neigh-

bouring objects, and proposed NQ-DBSCAN to speed up the algo-

rithm by pruning the distance calculation to expand the cluster.

Grid-based DBSCAN is an exact algorithm that can produce the

same clustering result as the original DBSCAN. The idea behind

Grid-based DBSCAN is to divide the whole dataset into equal-sized

square-shaped grids with the side width of ε/
√

d , where d denotes

the data dimension. Therefore, any two objects in the same grid

are within distance ε from each other. Then, Grid-based DBSCAN

performs clustering based on neighbour grid query and merging

them instead of ε-range queries and cluster labeling propagation.

However, we find that Grid-based DBSCAN algorithms still suf-

fer from the following two problems. First, the number of neigh-

bour grids increases exponentially with the number of dimensions.

Specifically, the number of neighbour grids of a given grid will

be O ((2 � √

d � + 1) d) in the worst case. We provide a formal proof

for it in Lemma 1 in Section 4 . Although O ((2 � √

d � + 1) d) is usu-

ally considered as a constant with regard to n , it may have a sig-

nificant impact on the overall performance as the data dimen-

sion increases. For example, such number will be more than 10 20

when d = 20 such that we cannot simply neglect it. We name this

problem as neighbour explosion . Second, we observe symmetry and

transitivity in the merging of neighbour grids which enable finer

management strategies for such process. However, the existing

Grid-based DBSCAN algorithms focus on utilizing efficient solu-

tions to perform the merging rather than optimizing merging man-

agement strategies. Recall that the number of neighbour grids

increases exponentially with regard to data dimension. Hence we

argue that an effective merging management of neighbour grids is

in urgent need especially when the data dimension increases be-

cause generally we need to check every neighbour grid of a given

grid to decide whether they can be merged or not. Hereafter, we

will refer to the Grid-based DBSCAN algorithms as grid-based algo-

rithms , unless explicitly stated otherwise.

In this paper, we aim at alleviating the above-mentioned draw-

backs of grid-based algorithms and propose an efficient approach,

named GDCF (G rid-based D BSCAN with C luster F orest). The ap-

proach utilizes bitmap-like structure called HyperGrid Bitmap

(HGB for short) to index non-empty grids in multi-dimensional

space so that neighbour grid query can be performed efficiently.

For the neighbour grid merging, we follow the concept of union-
nd algorithm and devise a forest-like structure called cluster forest

o maintain the cluster information for pruning unnecessary merg-

ng computations. As a result, the algorithm derives a significant

erformance improvement. We also prove the correctness of the

DCF. Moreover, we find that running the cluster forest in differ-

nt orders can lead to a different number of merging operations

eeded to perform in the merging step. We suggest two differ-

nt process orders, namely Uniform Random Order (UR) and Low-

ensity-First Order (LDF) , to optimize the number of merging op-

rations and to alleviate a bottleneck in the merging, respectively.

he proposed algorithm can produce the exact clustering results

s the original DBSCAN with significant improvement on the effi-

iency.

The rest of this paper is organized as follows. We survey the

elated work in Section 2 . We introduce preliminaries used in this

aper in Section 3 . Section 4 reveals the overall proposed frame-

ork. Sections 5 and 6 present our proposed HGB and GDCF, re-

pectively. The experimental results and discussions are provided

n Section 7 . We conclude the paper in Section 8 .

. Related work

Due to the expensiveness in running time of the original DB-

CAN, researchers have been developing many methods to improve

he performance of DBSCAN for decades. Here we broadly catego-

ize related papers in the literature as follows.

Sampling-based DBSCAN algorithms are designed to improve

he time-consuming object neighbour query operation in DBSCAN.

or example, Zhou et al. [39] proposed a sampling-based method

hich selects a few representatives, rather than all the neighbour

bjects, as seeds to expand the clusters. However, this method pos-

ibly misses some objects. Moreover, it still raises a representa-

ive selection problem which directly impacts on both performance

nd accuracy of DBSCAN. Another sampling-based method can be

ound in [40] . However, it cannot produce the exact results as well.

Grid-based DBSCAN algorithms. Zhao et al. [41] partition data

ayout in each dimension into intervals and the space is then par-

itioned into hyper-rectangular grids. The algorithm will only com-

ute the density of a given object with the objects in its neigh-

ouring grids. Thus, some objects can be omitted. Zhao and Song

42] attempted to improve the efficiency of [41] ; however, they

oth still cannot produce the exact result. CIT [43] is the another

ne that develops grid-based algorithm for DBSCAN. The algorithm

artitions the data layout into grids with width greater or equal

o 2 ε and sets a boundary of neighbour search to ε around the

rids. Our work is related to [33] and [35] . Gunawan [33] pro-

osed a 2D grid-based algorithm which can terminate in genuine

 (n log n). Gan and Tao [35] extended the grid-based algorithm to

olve DBSCAN in higher dimensions. Even though the observation

f [35] makes a good contribution about the complexity of DB-

CAN, recently, there is an interesting disputation [44] on some

naccurate statements of the paper [35] . In addition, the authors

uggested when and why we should still use original DBSCAN.

akai et al. [34] proposed an improved grid-based algorithm which

efines the merging step by using minimum bounding rectangle

riteria. While in this paper we devise a novel grid-based DBSCAN

olution with an efficient and compact index as well as an im-

T. Boonchoo, X. Ao and Y. Liu et al. / Pattern Recognition 90 (2019) 271–284 273

p

t

i

d

p

S

e

i

m

t

t

F

T

f

T

S

p

q

j

t

i

t

3

i

3

b

w

i

t

n

D

p

q

D

|

D

d

D

f

w

r

D

t

d

D

t

D

a

f

m

t

j

o

E

a

b

p

p

A

t

C

3

r

t

t

b

t

u

s

t

I

i

w

D

n

i

o

d

t

o

r

t

t

s

t

D

c

l

t

j

o

j

3

g

d

s

d

b

i

t

e

B
rove merging management strategy, which extends the algorithm

o higher dimensional data.

Other efficient DBSCAN algorithms. There are other effort s f or

mproving the efficiency of DBSCAN. Some of them focus on pro-

ucing distributed or parallel version of DBSCAN [36,37,45–47] . Ap-

roximate algorithm is another kind of method to accelerate DB-

CAN [35] . Mai et al. [38] proposed an anytime DBSCAN which

mploys active learning for learning the current cluster structure,

t thus can select only necessary objects to expand clusters. Ku-

ar and Reddy [31] proposed a novel graph-based indexing struc-

ure to alleviate the bottleneck of neighbour search operations in

he traditional DBSCAN. Their method is divided into two phases.

irst, they scan the entire database to obtain a set of object groups.

hen, the traditional DBSCAN is run based on the groups obtained

rom the first phase to speed up the neighbour search operations.

his method can produce an exact result as the traditional DB-

CAN. Recently, NQ-DBSCAN [30] was proposed. NQ-DBSCAN im-

roves the traditional DBSCAN by proposing an efficient neighbour

uery to reduce the search space. It assumes that any nearby ob-

ects should have similar neighbouring objects, it uses the informa-

ion of neighbouring object to speed up the algorithm by perform-

ng the distance calculation with only necessary objects to expand

he cluster.

. Preliminaries

In this section, we first review the original DBSCAN and then

ntroduce the existing works that most relate to our method.

.1. DBSCAN

DBSCAN groups objects of a dataset in d -dimensional space

ased on density with regard to two parameters: ε and MinPTS ,

here ε specifies the longest possible distance from an object to

ts neighbours, and MinPTS specifies the minimum size of subset

o form a cluster. Formally, a dataset containing n objects is de-

oted by D and an object in a d -dimensional space is denoted by

p ∈ R

d .

efinition 1. Neighbourhood: An object q is a neighbour of object

 if the distance between them is less or equal to ε, i.e., dist(p,

) ≤ ε. The neighbour set of object p is denoted by N(p).

efinition 2. Core object: An object p is called a core object if

N(p)| ≥ MinPTS .

efinition 3. Direct density-reachability: an object p is directly

ensity-reachable from an object q if q is a core object and p ∈ N(q).

efinition 4. Density-reachability: an object p is density-reachable

rom an object q if there exists an object sequence p 1 , p 2 , . . . , p k
here p 1 = q and p k = p such that p i +1 is directly density-

eachable from p i , where 1 ≤ i ≤ k − 1 .

efinition 5. Density-connectivity: an object p is density-connected

o an object q if there exists an object o such that both p and q are

ensity-reachable from o .

efinition 6. Cluster: a cluster C is a non-empty subset of D such

hat

• ∀ p, q , if q is density-reachable from p w.r.t. ε and MinPTS and

p ∈ C , then q ∈ C (Maximality) ,
• ∀ p, q ∈ C, p and q are density-connected w.r.t. ε and

MinPTS (Connectivity) .

efinition 7. Noise: an object p is a noise if p does not belong to

ny cluster in D .

Basically, a primary cluster can be formed by a core object (re-

er to Definitions 1 and 2). Then, these primary clusters may be
erged to the same cluster if they are density-connected (refer

o Definitions 5 and 6) from each other. Finally, all non-core ob-

ects may be identified to be border objects of particular clusters

r noises according to Definitions 6 and 7 .

xample 1. Fig. 2 shows an example data layout. In such figure,

ll circle objects are core objects because the sizes of their neigh-

our sets are greater than or equal to MinPTS and thus they form

rimary clusters (Definitions 1 and 2). p 3 is density-reachable from

 1 because there exists a sequence p 1 , p 2 , p 3 (Definitions 3 and 4).

nd, p 1 and p 5 are density-connected since it has p 3 as a connec-

or (Definition 5). Finally, this dataset contains 2 clusters: C 1 and

 2 (Definition 6) with tree triangle noise objects (Definition 7).

.2. 2D grid-based DBSCAN

The grid-based algorithm in [33] implements the DBSCAN in

eal O (n log n) for 2D data. It consists of four steps, namely parti-

ioning step, labeling step, merging step and noise/border object iden-

ification step . To the best of our knowledge, other existing grid-

ased DBSCAN algorithms also perform the same framework, and

he only difference is the implementation details in some individ-

al steps.

Partitioning step divides the whole dataset into equal-sized

quare-shaped grids, each grid has side width of ε √

2
. This parti-

ioning makes the possible longest distance within every grid be ε.

t thus guarantees that the distance of every pair of objects resided

n the same grid is at most ε. Then, the labeling step identifies

hether each grid is a core grid by the following definition.

efinition 8. Core grid: A grid with at least one object is called a

on-empty grid. A non-empty grid is called a core grid if and only

f there are at least MinPTS objects inside or there exists at least

ne core object inside the grid.

The grids which are labeled as core grid can form their own in-

ividual clusters. Two or more core grids can possibly be merged

o a same cluster. Hence, the merging step then needs to be carried

ut. The merging step will produce a graph in which vertices rep-

esent core grids, and there is possibly an edge added between the

wo vertices if they can be merged together. Finally, the final clus-

ers will be obtained from its fully connected sub-graphs. In such

tep, the following mergability is utilized to determine whether the

wo grids can be merged or not.

efinition 9. Mergability: Given two core grids g 1 and g 2 , they are

onsidered to be in the same cluster if and only if there exists at

east one core object pair p and q , where p ∈ g 1 and q ∈ g 2 , such

hat dist(p, q) ≤ ε.

After the merging step has been completed, all non-core ob-

ects need to be identified whether they are noises or the border

bjects of certain clusters. Such final step is called border/noise ob-

ect identification step.

.3. Grid-based DBSCAN when d ≥ 3

Gan and Tao [35] recently extended the above-mentioned 2D

rid-based DBSCAN to higher dimensionality. In particular, for any

imension d ≥ 3, they partitioned the dataset into grids with the

ide width of ε √

d
instead of ε √

2
. In such case, the longest possible

istance within a grid is still ε. Then an efficient nearest neigh-

our search method, namely Bichromatic Closest Pair (BCP) [48] ,

s adopted to perform the merging step on the graph of grids in

heir algorithm. As a result, they claimed the algorithm has an av-

rage time complexity as O (n
2 − 2

� d/ 2 � + δ) which is dominated by the

CP method in the merging step , where n denotes the number of

274 T. Boonchoo, X. Ao and Y. Liu et al. / Pattern Recognition 90 (2019) 271–284

Fig. 2. An example of dataset layout. The dashed circles indicate the ε-radii of objects, and let MinPT S = 4 .

g

t

b

t

b

s

f

r

r

o

d

w

5

d

d

s

B

k

j

g

e

t

C

fi

f

B

j

i

n

p

p

E

F

t

a
objects, d denotes the data dimension, and δ can be an arbitrary

small positive constant.

4. GDCF Framework

In this section, we detail the proposed GDCF framework. We

first discuss the shortcomings of grid-based algorithms and then

introduce our approach.

4.1. Motivation and framework of GDCF

In grid-based algorithms, we find that the number of neighbour

grids of a given grid increases exponentially as the dimension in-

creases, and we have the following lemma.

Lemma 1. Considering a d-dimensional space, the number of the

neighbour grids which needs to be checked for a given grid is

(2 � √

d � + 1) d in the worst case.

Proof. Without loss of generality, we denote a specific grid in the

d -dimensional space as g . For each direction of individual dimen-

sion, the number of neighbour grids of g needs to be checked, de-

noted by μ ∈ N , is calculated as follows:

μ
ε √

d
≤ ε, μ ≤

√

d = �
√

d � .
Since there are two directions for each individual dimension,

we need to consider 2 � √

d � + 1 grids for each dimension. Here the

number 1 denotes the grid g itself. Finally, combining all the di-

mensions together, the number of neighbour grids that the algo-

rithm needs to consider is (2 � √

d � + 1) d − (τ + 1) for every given

grid g , where τ + 1 is a constant indicating the number of corner

grids and g itself which are not included in the set of neighbour

grids. �

According to Lemma 1 , given a specific grid, the running time

of its neighbour grid query in the grid-based algorithms will be

O ((2 � √

d � + 1) d) in the worst case. For example, the neighbour

grids of g 8 (the centered grid) in Fig. 3 (a) are those 20 line-shaded

grids.

We name the problem that the number of neighbour grids in-

creases exponentially as neighbour explosion . Thus, an efficient in-

dexing technique is demanded to support neighbour grid queries,

especially when d increases. As a consequence, we adopt a bitmap-

like structure HGB in GDCF to index non-empty grids such that it

supports fast range queries.

Moreover, we find that the merging step has redundancies that

are described as follows. Denoted by g 1 , g 2 and g 3 as core grids, we

may observe the following redundancies during the merging step.
• Redundancy 1 (symmetry) . g 1 needs to perform a merging op-

eration with grid g 2 and vice versa. Both of them are equivalent,

and either one can be skipped.
• Redundancy 2 (transitivity) . Assume the g 1 and g 2 are in the

same cluster and so do g 2 and g 3 . We should omit the merging

operations between g 1 and g 3 .

However, these redundancies are neglected by conventional

rid-based algorithms in low data dimension. It is worth noting

hat these redundancies can become more severe due to the neigh-

our explosion problem in higher dimensional space. The reason is

hat the more neighbour grids, the more overlap neighbouring area

ecomes. Therefore, the grids having overlap neighbours can pos-

ibly encounter the above redundancies. Hence we devise a cluster

orest to manage the merging of GDCF to alleviate the observed

edundant computations.

The framework of GDCF. The framework of grid-based algo-

ithms carries over to GDCF almost verbatim. GDCF also consists

f the four steps, and the only differences are the way that we in-

ex the non-empty grids (detailed in Section 5) and the way that

e perform the merging step (detailed in Section 6).

. Indexing with HGB

HGB (HyperGrid Bitmap) is a bitmap-like structure used to in-

ex non-empty grids in the GDCF framework. It is composed by

 two-dimensional bit arrays, where d denotes the data dimen-

ion. We denote each of the bit array as B i where 1 ≤ i ≤ d . Each

 i can be regarded as a table with k i rows and N g columns, where

 i is the number of distinct positions of grids that contain ob-

ects in i th dimension, and N g denotes the number of non-empty

rids. In other words, each B i is used to record the position of ev-

ry non-empty grid in i th dimension. To set up each B i , we ini-

ially set all bits of it to 0, and encode each grid from id 1 to N g .

onsidering a non-empty grid whose id = x , where 1 ≤ x ≤ N g , we

rst find the position of that grid in i th dimension, denoted as j

or example, and set the corresponding bit of B i , i.e., B i [j, x] to 1.

 i [j, x] = 1 indicates the position of the grid x in i th dimension is

 . The procedure of creating indices for non-empty grids is shown

n Algorithm 1 .

First, we initially set all the bits in HGB to 0 (Line 2). For each

on-empty grid g , we set the bit array of dimension i and of value

os at array index k to 1 (Lines 3–7), where i is data dimension,

os is the position of grid in i -dimension and k is the grid index.

xample 2. Fig. 3 (b) shows the HGB for the toy example in

ig. 3 (a). In the example, we have 9 non-empty grids in 2D space,

hus N g = 9 and d = 2. As a result, we need 2 bit arrays, namely B 1

nd B , such that each of which contains 9 columns. Meanwhile,
2

T. Boonchoo, X. Ao and Y. Liu et al. / Pattern Recognition 90 (2019) 271–284 275

Fig. 3. Example of 2D data layout and its corresponding HGB.

Algorithm 1: Building HGB.

Input : S: set of non-empty grids, d: data dimension

Output : B: HGB on D

1 k ← 0

2 Set all the bits in B to 0

3 foreach non-empty grid g ∈ S do

4 for i ← 1 to d do

5 pos ← g.pos [i]

6 B i [pos, k] = 1

7 increase k by 1

B

v

h

c

r

R

w

q

t

o

m

t

r

m

e

w

a

i

a

g

b

t

E

r

s

m

t

B

1

p

T

5

h

p

e

e

t

t

b

t

t

6

6

 1 and B 2 contain 6 and 3 rows since they have 6 and 3 distinct

alid positions, respectively. For a specific grid, e.g. g 8 (id = 8), we

ave B 1 [4 , 8] = 1 and B 2 [2 , 8] = 1 as shown in Fig. 3 (b).

Once HGB is completely constructed, we can simply perform a

onventional range query on HGB of a given grid g by setting the

ange for each dimension as follows:

ange (g, i) = [g.pos [i] − �
√

d � , g.pos [i] + �
√

d �] ,
here i denotes i th dimension. The procedure of neighbour grid

uery on HGB is shown in Algorithm 2 .

Algorithm 2: NeighbourGridQuery(g, d , B).

Input : g: the current considered grid

d: data dimension

B: the HGB of dataset D

Output : G: the neighbour grid of the considered grid g

1 G ← initialize the set of neighbour grid of g as ∅
2 tmp 1 ← initialize bit array of size 1 × n by 1

3 for i ← 1 to d do

4 tmp 2 ← initialize bit array of size 1 × n by 0

5 for j ← g.pos [i] − � √

d � to g.pos [i] + � √

d � do

6 tmp 2 = tmp 2 OR B i [j, :]

7 tmp 1 = tmp 1 AND tmp 2

8 for i ← 1 to n do

9 if IsSet (tmp 1[i]) then

10 G ← G ∪ GetGridByID (i)

11 return G

i
The NeighbourGridQuery performs a range query search with

he support of HGB and returns all the non-empty neighbour grids

f g which contain possible neighbour objects for the grid g . The

aximum number of the returned grids is (2 � √

d � + 1) d according

o Lemma 1 . In particular, we first look up every table B i , to get

ows with regard to specific ranges in each corresponding i th di-

ension (Lines 3–5 of the function). Then we perform bit-wise op-

rations OR (Line 6 of the function) on among rows in such ranges

hich are in the same tables. The outputs of the bit-wise oper-

tions OR are d bit arrays representing the appearances of grids’

ntervals in each dimension. Finally, we will perform bit-wise oper-

tions AND (Line 7 of the function) on among those d bit arrays to

et the final encoded bit array. We can decode this final bit array

y looking up only the bit positions that are set to 1, and return

he set of neighbour grids (Lines 8–10 of the function).

xample 3. In Fig. 3 , considering a neighbour grid query of g 8 , the

anges of dimension 1 and dimension 2 are [2, 6] and [1, 3], re-

pectively. Then slices collected from tables corresponding to di-

ension 1 and dimension 2 are B 1 [2:6,:] and B 2 [1:3,:], respec-

ively. First we perform bitwise operations OR on B 1 [2:6,:] and

 2 [1:3,:], the outputs are [0, 1, 1, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1,

, 1, 1, 1, 1], respectively. Then the final bitwise operation AND is

erformed on the two bit arrays, outputting [0, 1, 1, 1, 1, 1, 1, 1, 1].

hus, the set of neighbour grids of g 8 is all the grids except g 1 .

.1. Complexity analysis

First, we analyze the space complexity of HGB. Recall that we

ave d bit arrays in HGB, where d is the data dimension. For sim-

licity, we assume every bit array has κ distinct positions. Since

ach bit array has κ rows and N g columns (the number of non-

mpty grids), the space complexity is thus O (d ·κ · N g). Second, the

ime complexity of constructing HGB is O (d · N g), since we need

o scan all the non-empty grids and set the corresponding bits of

it arrays for every dimension. For neighbour query operation, the

ime complexity is O (d · (2 � √

d � + 1)) = O (d 3/2), because it needs

o collect slices (of the range size (2 � √

d � + 1)) of the d bit arrays.

. The GDCF Algorithm

.1. Concepts

The idea of GDCF is to reduce the redundancies of the merg-

ng step. We develop a tree-like data structure to maintain the

276 T. Boonchoo, X. Ao and Y. Liu et al. / Pattern Recognition 90 (2019) 271–284

Fig. 4. shows a running example of the merging step for core grids A , B , . . . , E , F . (a) and (b) illustrate the merging step with its corresponding cluster forests at each time

T i in process orders Q 1 and Q 2 , respectively. Here, we only show the case of time T i in which there are changes on the cluster forests. Note that any pairs of core grids here

can be merged with their neighbouring grids except that B cannot be merged with other grids.

s

s

M

t

c

a

o

m

s

t

e

p

a

w

=

F

c

w

g

p

g

t

A

m

t

t

e

r

t

t

o

t

d

6

g

e

e

clustering information by following the idea of union-find algo-

rithm to mange the merging. We named this tree-like data struc-

ture as cluster forest. A cluster forest consists of a number of clus-

ter trees which are used to maintain the clustering information

of any states in the merging step. We give the definition, main-

tenance, and application of the cluster forest and discuss how the

cluster forest alleviates the redundancy problem in Section 6.1.1 .

We observe that when the cluster forest is adopted, the order

of processing has an influence on the total number of merge-

checkings needed to perform. We find that performing the merg-

ing in uniform random order can optimize the number of merge-

checkings in most cases. However, for high-density database, if

we pick high-density grids to process first, a bottleneck could be

occurred because we need to perform merge-checkings of that

high-density grids and its neighbours. As a result, we propose to

perform the merging in low-density-first order to alleviate the

bottleneck. We discuss about orders of the merging step in

Section 6.1.2 .

6.1.1. Cluster forest

We implement the cluster forest such that the algorithm can

make an inference whether two grids are in the same cluster or

not.

Definition. A cluster forest, denoted by �, consists of trees, and

each tree is denoted by π . Each tree consists of cluster nodes (as

intermediate nodes) and core grid nodes (as leaf nodes). Both clus-

ter nodes and core grid nodes contain a parent field, which indi-

cates the parent of the node. Additionally, the cluster node has

another field cluster that indicates the cluster id that such node

identifies. And, we denote the root of node p by rc(p). Note that

for a core grid node g, g.parent returns the cluster node that grid

g belongs to. For example, Fig. 4 (a) at time T 1 illustrates a cluster

forest (bottom) for its corresponding data layout (top). In the clus-

ter forest shown in Fig. 4 (a), the circle and squares represent the

cluster node and core grid nodes, respectively. The grids residing in

the same tree are inferred that they are in the same cluster, e.g.,

grids A and C , in Fig. 4 (a) at T 1 , belong to the same cluster which

is cluster 1. In the merging step, we will maintain such forest by

creating trees and merging those trees if needed. The following
ubsections provide the details of maintenance and application of

uch cluster forest.

aintenance. At the moment of processing a grid g , a new clus-

er node will be created and assigned to the grid g if it is a no-

luster grid. For example, in Fig. 4 (b) at T 2 , B is being processed,

nd a new cluster node ➁ is created and assigned as the parent

f B . Then every neighbour grid g ′ of g , i.e., g ′ ∈ G(g) , that can be

erged with g and already belongs to some cluster, will be in-

erted into a set, denoted by A . Finally, the algorithm will search

he root node from among grids in the set A which has the small-

st cluster number, denoted by lrc(A) , and assigns lrc(A) as the

arent to all the roots of every grid in the set A . That is, in Fig. 4 (a)

t T 3 , grids A , C , D , E , F can be merged with D . Here the set A
ill contain those grids including D . The algorithm assigns lrc(A)

 ➀ as the parent of all the roots of every grid in A as shown in

ig. 4 (a) at T 3 (the bottom forest). In the case that a grid g ′ in G(g)

an be merged with g , and g ′ is a no-cluster grid, the algorithm

ill directly add g ′ on the cluster forest and assign the parent of

rid g as the parent of g ′ . According to Fig. 4 (a) at T 1 , for exam-

le, grid C is directly added to the same tree as grid A . Notice that

rids A and C share the same parent, namely ➀. The forest after

ime T 1 can be shown in the bottom forest in Fig. 4 (a).

pplication. Once a cluster forest is constructed at time T , we can

ake an inference, by the best information at the time T , whether

wo grids, in the forest, p and q are already in the same clus-

er or not. The inference between grids p and q by a cluster for-

st � is denoted by �.Infer(p, q). �.Infer(p, q) returns true if

c (p) = rc (q) which means p and q are already known they are in

he same cluster. Otherwise, it will return false . This inference

urns out to be useful since the algorithm can skip real merging

peration between the grids p and q if they can be inferred that

hey are already in the same cluster. This can lead to a tremen-

ous reduction in the running time of algorithm.

.1.2. Merging orders

From Section 6.1.1 , we know that if we have a set of N core

rids, for any time { T 1 , T 2 , . . . , T N−1 } , if the process order is differ-

nt, the cluster forest might be different as shown in the following

xample.

T. Boonchoo, X. Ao and Y. Liu et al. / Pattern Recognition 90 (2019) 271–284 277

E

t

c

w

m

t

a

t

m

f

r

b

T

o

n

f

t

p

W

t

U

f

t

q

c

a

q

i

w

L

i

s

f

t

o

c

c

t

t

g

p

6

p

t

t

r

g

t

A

(

f

t

t

O

I

f

Algorithm 3: GDCF Algorithm.

Input : C : set of core grids

d: the data dimension

B: the HGB

Output : �: the finalized cluster forest

1 if mode = LDF then

2 Q ← sort C by #objects in each grid in ascending order

3 else

4 Q ← randomly shuffle C

5 X ← 0 , � ← ∅
6 foreach g ∈ Q do

7 G ← NeighbourGridQuery (g, d, B)

8 A ← { g}
9 if g / ∈ � then

10 create a new tree π with a leaf node of g and its

cluster node g. parent , g. parent . cluster ← X

11 increase X by 1

12 add π to �

13 for each grid g ′ ∈ G do

14 if �. Infer (g, g ′) = true then

15 g and g ′ are in the same cluster and skip

16 else if g and g ′ can be merged then

17 if g ′ / ∈ � then

18 create a leaf node of g ′
19 g ′ .parent ← g.parent

20 else

21 A ← A ∪ { g ′ }

22 set parents of all roots of cluster numbers in set A to

lrc(A)

g

a

G

r

i

c

6

t

T

t

c

p

g

c

P

i

P

w

π
c

L

l

W

t

xample 4. Let process order Q = { g 1 � . . . � g l } produce a clus-

er forest �Q
T l

and let process order Q

′ = { g ′ 1 � . . . � g ′
l
} produce a

luster forest �Q ′
T l

, where l ∈ [1 , N − 1] . g i and g ′
i

are the core grids

hich are processed at time T i . If there exists g i � = g ′
i
, then �Q

T l

ight not be equivalent to �Q ′
T l

. Fig. 4 shows the merging step of

wo different process orders and their corresponding cluster forests

t time T i . As we can see, these two cluster forests are different at

ime T 2 , T 3 , T 4 . Thus, the inference made by the two cluster forests

ight be different. For exam ple, at time T 2 , �
Q 1
T 2

. Infer (A , D) =
alse , while �

Q 2
T 2

. Infer (A , D) = true .

As a result, making inferences by different cluster forests can

esult in different inference results. This leads to a different num-

er of merging operations needed to perform in the merging step.

herefore, the process order in the merging step has an influence

n the overall performance of algorithm. Fig. 4 shows that the

umbers of merging operations needed to be performed are dif-

erent if the process orders are different, i.e., 7 merging opera-

ions (Fig. 4 (a)) versus 5 merging operations (Fig. 4 (b)). In this pa-

er, we propose two different process orders in the merging step.

e argue that GDCF still performs correctly in any other orders,

his thus makes room for future work.

niform Random order (UR). This order first shuffles the core grids

rom the labeling step in a uniform random manner and puts

hem into a queue. Then we will pick those core grids from the

ueue one by one and stops when the queue is empty. Since any

ore grids are uniformly picked to be processed, the cluster forest

re likely to almost cover the core grids at the beginning. Conse-

uently, unprocessed core grids will have much possibility to make

nferences such that they can skip those costly merge-checkings

ith their neighbours.

ow-Density-First order (LDF). However, performing the merging

n orders that the densities of grids are not taken into account,

uch as UR, may lead to a bottleneck that the algorithm per-

orms merge-checkings of high-density grids. To alleviate the bot-

leneck, we propose to perform the merging in low-density-first

rder. Specifically, we pick low-density grids to perform merge-

heckings with their neighbour first such that the cluster forest

an be soon established. As a result, high-density grids can take

he advantages of the cluster forest by making inferences to skip

he actual merge-checkings. Therefore, the bottleneck can be miti-

ated. Comparisons and discussions between these two orders are

rovided in the experiment section.

.2. The overall algorithm

In this section, we describe the overall algorithm under the pro-

osed GDCF based on the two process orders. The pseudo code of

he overall algorithm is given in Algorithm 3 . First, we collect all

he core grids and put them into a queue such that the order is in

egard to the process order mode (Lines 1–4). Next, for every core

rid g ∈ Q , we invoke the NeighbourGridQuery function to query

he set of neighbour grids and include g into a set, denoted by A .

fter that we begin to maintain the grid g on the cluster forest

Lines 8–22, refer to Section 6.1.1).

However, we can skip such costly checking by using the cluster

orest to make inferences. That is, if grid g and g ′ can be inferred

hat they are in the same cluster, where g ′ ∈ G, we simply skip

he merging operation between these two grids (Lines 14 and 15).

therwise, we merge these two grids according to Definition 9 .

f they can be merged and g ′ does not appear in the cluster

orest, we create a corresponding leaf node and connect it with
.parent (Lines 17–19). Once all the core grids are processed, the

lgorithm then finishes. Although the worst-case complexities of

DCF in any orders are identical to that of the grid-based algo-

ithm analyzed in [33] , GDCF can prune the redundant operations

n the merging step. Therefore, the performance can be signifi-

antly improved, this will be shown in the experiment section.

.3. Correctness of GDCF

We prove the correctness of GDCF by the following theorems in

his subsection.

heorem 1. (Correctness). Every tree in the final cluster forest � re-

urned by GDCF algorithm correctly denotes an individual cluster of

ore grids.

To prove such theorem, we need to prove the following two

ropositions. Without loss of generality, we assume there are two

rids g and g ′ and their corresponding nodes are contained by the

luster forest �.

roposition 1. Given two grids g and g ′ which can be merged on �,

f g ∈ π⊆�, then g ′ ∈ π .

roof. We prove it by deriving to a contradiction. Assume g ′ ∈ π ′
here π ′ � = π . Denoted by r and r ′ as the root nodes of the trees

and π ′ , respectively, we have r � = r ′ since π � = π ′ . Since g and g ′
an be merged, they will belong to the same set, namely A (cf.

ines 16–21). Then r and r ′ will be the same as they are equal to

rc(A) , where lrc(A) is the lowest root cluster node in the set A .

e have derived a contradiction. Hence, g and g ′ are in the same

ree. �

278 T. Boonchoo, X. Ao and Y. Liu et al. / Pattern Recognition 90 (2019) 271–284

Table 1

Dataset statistics.

Dataset Dimension Type #Objects #Clusters

3D 3 Synthetic 3,0 0 0,0 0 0 10

10D 10 Synthetic 3,0 0 0,0 0 0 10

30D 30 Synthetic 3,0 0 0,0 0 0 10

40D 40 Synthetic 3,0 0 0,0 0 0 10

Household 7 Real 2,075,259 N/A

PAMAP2 54 Real 3,850,505 N/A

t

F

a

d

U

5

w

s

d

7

t

a

p

M

a

7

t

r

s

N

o

i

n

7

p

o

p

f

s

s

i

t

t

s

i

1 https://sites.google.com/site/junhogan/ .
Proposition 2. Given two grids g and g ′ which cannot be merged on

�, if g ∈ π⊆�, then g ′ �∈ π .

The proof of such proposition is similar to that of Proposition 1 ,

and we thus omit it due to the space limitation. With

Propositions 1 and 2 , we can derive the correctness of GDCF. Next,

we prove the completeness of the algorithm.

Prior to the next proof, we give the following lemma.

Lemma 2. Given a cluster forest � at any time T, denoted by �T ,

if there exists a core grid sequence p 1 , p 2 , . . . , p j ∈ Q , where p 1 = p

and p j = q such that p i +1 can be merged with p i (according to Defi-

nition 9), where 1 ≤ i ≤ j − 1 , then all p 1 , p 2 , . . . , p j ∈ π, where π ∈
�T i

.

Proof. This can be proved by deriving a contradiction. Assume

all the core grids in Q except a grid p l are in the same tree

π . Suppose p l ∈ π ′ , where π ′ � = π and l ∈ [1, j]. Since p l can be

merged with at least one grid p o ∈ Q , where l � = o , we derive

π = π ′ (Proposition 1). We thus induce to a contradiction. �

Theorem 2. (Completeness) For any process order Q = { g 1 � g 2 �
· · · � g m

} , where m is the number of core grids, after time T m

, �Q

will contain equivalent cluster trees in terms of reachability.

Let p , q ∈ Q , we prove the completeness by proving that Infer(p,

q) always returns a correct answer.

Proof. We divide this proof into two cases as follows.

Case 1: Infer(p, q) returns false . It is trivial since the algo-

rithm will perform an actual merging operation without any infer-

ence between p and q . In case p and q can be merged, they will be

in a same tree (refer to Section 6.1.1). As a result, they will reach

to each other by the root node.

Case 2: Infer(p, q) returns true . This case is proved by

Lemma 2 , where p 1 = p and p j = q . �

As the algorithm stops after time T m

, that is, all core grids

have been processed either Case 1 or Case 2 with all their neigh-

bour grids. Therefore, the completeness holds. According to the

Theorems 1 and 2 , GDCF in any merging orders are equivalent to

the grid-based DBSCAN which can produce the exact results as the

original DBSCAN.

7. Experiments

In this section, we present the results of our experimental stud-

ies on real-world and synthetic datasets.

7.1. Experimental settings

All the experiments were conducted in a workstation equipped

with four Intel (R) CPU E5-2609 v3 processors and 128GB RAM

running a Linux Cent OS 6.5. We implemented our proposed GDCF

with C ++ .

7.1.1. Datasets

We evaluated our algorithm on four synthetic and two real-

world datasets. Table 1 depicts their statistics.

Synthetic Datasets We generated the synthetic datasets by

a generator URG in C ++ . The generator takes 4 parameters:

the number of objects (n), the number of clusters (c), the

number of dimensions (d), and the percent of noise (pnoise)

[default = 0.0 0 05%]. We used URG to generate five different kinds

of datasets, i.e., 3-, 10-, 15-, 20-, 30-, and 40-dimensional datasets

in range 10 0 0–10,0 0 0 in each dimension. To avoid too-dense clus-

ter, when 0.0 0 025 n objects have been generated, the data will

have possibility to move a bit (33% for −5 , 33% for +5) in each

dimension. For simplicity and convenience, we denote each of
hem by its dimensionality when discussing in the following parts.

or example, if we set n = 3 , c = 10 , d = 3 , the URG will generate

 dataset with 3 million objects grouped into 10 clusters in 3-

imensional space, and we denote it as 3D.

Real-world Datasets All the real datasets are obtained from

CI Machine Learning Repository [49] . We evaluated on 7- and

4-dimensional datasets. For the 7- and 54-dimensional datasets,

e follow [35] to use Individual household electric power con-

umption (Household) and PAMAP2 [50] as the 7-, 54-dimensional

atasets, respectively.

.1.2. Compared methods and parameter settings

The compared methods in the experiments include

1. DBSCAN: original DBSCAN [9] with r ∗tree,

2. GRID [35] : A state-of-the-art grid-based exact DBSCAN algo-

rithm,

3. GRID-A [35] : A state-of-the-art grid-based approximate DB-

SCAN algorithm,

4. HGB: our proposed method with only HGB indexing,

5. GDCF-UR: Our full proposed method in UR order.

6. GDCF-LDF: Our full proposed method in LDF order.

For the implementation of DBSCAN, GRID, and GRID-A, we used

he binary code which is implemented by C ++ and publicly avail-

ble. 1 We investigated the datasets and followed the suggestions

roduced by the parameter selection tool [51] for setting ε and

inPTS with regard to the range and dimension of datasets, as well

s the number of grids.

.2. Experimental results

In this subsection, we demonstrate the experimental results. All

he reported running time of the compared methods is a 3-time-

un average value, and we did not include some experimental re-

ults of DBSCAN because it failed to report the results within 15 h.

ote that all the running time reported includes the running time

f the four steps in the algorithm, i.e. the partitioning step (build-

ng HGB), the labelling step, the merging step (GDCF), and the

oise/border object identification step.

.2.1. Clustering result quality

First, we examine whether the clustering quality of our pro-

osed methods GDCF in UR and LDF orders are equivalent to the

riginal DBSCAN. For this purpose, we use the clustering results

roduced by the original DBSCAN as the ground truth. We employ

our validity measures, i.e. adjusted rand index (ARI), purity, preci-

ion , and F1-score . The results are presented in Table 2 . We can

ee the consensus that all the measures suggest that our method

n both UR and LDF orders can produce exactly the same results as

he original DBSCAN on all the measured datasets. We also provide

he 2D visualization of the compared methods in Table 3 . We can

ee that both GDCF-UR and GDCF-LDF can group all the objects

nto the clusters exactly the same as the original DBSCAN does.

https://sites.google.com/site/junhogan/

T. Boonchoo, X. Ao and Y. Liu et al. / Pattern Recognition 90 (2019) 271–284 279

Table 2

Clustering quality measures over original DBSCAN.

Aggregation [52]

ARI Purity Precision F1-Score

UR 1.0 1.0 1.0 1.0

LDF 1.0 1.0 1.0 1.0

D31 [52]

ARI Purity Precision F1-Score

UR 1.0 1.0 1.0 1.0

LDF 1.0 1.0 1.0 1.0

t4.8k [52]

ARI Purity Precision F1-Score

UR 1.0 1.0 1.0 1.0

LDF 1.0 1.0 1.0 1.0

M

d

p

p

G

7

o

r

t

p

M

8

q

f

t

s

t

Table 4

Clusters produced by the compared methods.

Dataset Parameters #Clusters

ε MinPTS DBSCAN GRID HGB GDCF-UR

3D 60 20 10 10 10 10

10D 200 50 N/A 10 10 10

30D 600 70 N/A 10 10 10

40D 800 80 N/A 10 10 10

Household (7D) 10 20 N/A 3 3 3

PAMAP2 (54D) 350 150 N/A 1 1 1

o

m

a

i

c

a

o

t

t

m

a

c

w

G

a

t

H

r

F

U

(

c

4
oreover, Table 4 also shows that the numbers of clusters pro-

uced by GRID, which is an exact grid-based DBSCAN, and our pro-

osed GDCF in UR and LDF orders are the same. In addition to the

roof in Section 6.3 , the experiments in this section also show that

DCF in UR and LDF orders is equivalent to the original DBSCAN.

.2.2. Overall performance

Fig. 5 illustrates the execution time of each compared method

n both synthetic and real-world datasets in log scale . From the

esults on the synthetic data shown in Fig. 5 , first we observed

hat HGB always runs faster than DBSCAN and GRID. For exam-

le, HGB runs 197.59 × faster than DBSCAN (3D dataset, ε = 60 ,

inP T S = 20), and almost 6 × faster than GRID (40D dataset, ε =
00 , MinP T S = 80). Since HGB produces efficient neighbour grid

uery, the proposed method obtains a clear time-saving.

Second, GDCF-UR, with the merging management strategy

or reducing redundant computations, significantly outperforms

he other compared methods. It achieves approximately 30 0 0 ×
peedup compared with DBSCAN. Moreover, it yet has almost up

o three orders of magnitude of speedup compared with GRID and
Table 3

Clustering results of original DBSCAN and the proposed methods on 2D datasets.
ur HGB. In addition, we surprisingly observed that the GDCF-UR

ethod is even faster than the recent GRID-A, which is claimed as

 O (n) approximate DBSCAN algorithm, when the data dimension

s larger than 3. For example, GDCF-UR achieves 736 × speedup

ompared with GRID-A (30D dataset, ε = 600 , MinP T S = 70). We

rgue that the reason for such observation is that the number

f the neighbour grids to be checked grows exponentially with

he data dimension. As a consequence, we cannot neglect it as

he data dimension increases, and our proposed merging manage-

ent strategy suggests its effectiveness. Furthermore, Fig. 5 (b), (c),

nd (d), respectively, also show that when the data dimension in-

reases, GDCF-UR still achieves advantages compared with GRID-A.

Similar observations can also be found from the results of real-

orld data shown in Fig. 5 (d) and (e). That is, HGB is faster than

RID, and GDCF-UR, moreover, clearly leads the compared two ex-

ct algorithms. For instance, HGB runs 15.38 × faster than GRID, on

he other hand, GDCF-UR runs 128.52 × and 1191.97 × faster than

GB and GRID (PAMAP2 dataset (54D), ε = 400 , MinP T S = 150),

espectively.

Additionally, considering the running times of 3D and 10D in

ig. 5 (a) and (b), GDCF-LDF significantly runs faster than GDCF-

R. For example, GDCF-LDF runs 30.11 × faster than GDCF-UR

10D dataset, ε = 320 , MinP T S = 50). While, there are no signifi-

ant differences of their running times on the other datasets (30D,

0D, Household, PAMAP2). The reason is that we fix the ranges

280 T. Boonchoo, X. Ao and Y. Liu et al. / Pattern Recognition 90 (2019) 271–284

Fig. 5. Running time on synthetic and real-world datasets.

n

t

b

d

c

5

a

i

c

t

d

7

i

t

t

g

d

c
(1–10 0 0 0) of synthetic datasets while varying the dimension. Con-

sequently, lower-dimensional datasets (3D, 10D) can be denser

than higher-dimensional datasets (30D, 40D). Since the distribu-

tions of real-world datasets are unknown, we then conjecture the

similar reason for the real-world datasets that the density distribu-

tion in each grid of real-world datasets may be sparse. Therefore,

GDCF-LDF cannot have more benefits on the cluster forest com-

pared with GDCF-UR (refer to Section 6.1.2).

7.2.3. Effectiveness of HGB

To demonstrate the effectiveness of HGB, we show the running

times of our framework which employs linear-search, kd-tree, and

HGB as neighbour search techniques by fixing MinPTS and varying

ε in Fig. 6 (a). First, we observe that the linear search as neighbour

search performs the worst in most cases of ε since it needs to scan

every single grid to check whether they are the neighbour grids of

the processing grid or not. On the other hand, HGB runs 2 × faster

than kd-tree and approximately 17 × faster than the linear search

when ε is small (ε = 150, the number of the neighbour grids in-

creases). Note that small ε challenges the clustering process as the
umber of partitioned grids will significantly increase. According

o this experiment, indexing techniques clearly facilitate the neigh-

our search, and HGB can achieve the fastest running time on 54-

imensional data. In addition, Fig. 6 (b) and (c) show the memory

onsumptions of kd-tree and HGB indexing on 40D synthetic and

4D real-world datasets, respectively. We can observe that kd-tree

nd bitmap have almost a similar amount of consumed memory

n most cases. We conclude that the bitmap indexing is more effi-

ient than kd-tree for indexing non-empty grids in terms of execu-

ion time, while their memory consumptions are not significantly

ifferent.

.2.4. Effectiveness of cluster forest

Next we visualized the number of merging operations as shown

n Fig. 7 to exhibit the effectiveness of the cluster forest. It is clear

hat the numbers of operations used by GRID and HGB are almost

he same. The reason is that we only use HGB to index non-empty

rids without any specialized techniques to avoid merging redun-

ancy. In addition, both GDCF-LDF and GDCF-UR achieve a signifi-

ant operation-saving compared with HGB and GRID. For example,

T. Boonchoo, X. Ao and Y. Liu et al. / Pattern Recognition 90 (2019) 271–284 281

Table 5

Running time in details of GRID, GRID-A and GDCF-UR on low-dimensional data (3D) and high-dimensional data (54D)

Algorithm Dataset Parameters Running time (s)

d ε MinPTS Partitioning Labeling Merging Border/Noise Total

GRID Synthetic 3 60 20 0.97 0.28 833.43 0.00 834.70

GRID-A 0.73 0.16 8.52 0.01 9.42

GDCF-UR 0.33 0.02 5.65 0.01 6.01

GRID PAMAP2 54 200 100 8.18 7896.77 83019.06 0.46 90924.49

GRID-A 5.88 6372.39 37664.18 0.51 44042.97

GDCF-UR 6.19 183.78 784.19 0.31 974.70

Fig. 6. Effectiveness of HGB.

Fig. 7. Effectiveness of GDCF.

G

p

s

i

m

t

m

7

r

d

U

f

s

t

r

s

a

G

8

1

g

d

t

p

t

p

a

I

s

n

d

m

c

a

1

a

G

G

7

U

d

F

(

t

g

c

t

s

a

G

c

b

c

c

d

c

f

G

e

w

c

c

d

G

e
DCF-UR performs only 0.15%, 4.62% of merging operations com-

ared with GRID on 54D real-world and 3D synthetic datasets, re-

pectively. As expected, we can see the saving ratio on 54D dataset

s much greater than that of 3D. The reason is that we encounter

ore redundancies in higher dimension. The results demonstrate

he effectiveness of cluster forest in redundancy reduction in the

erging step.

.2.5. A closer look

Next, we take a closer look on each step. Table 5 presents the

unning time of the four steps of some compared algorithms un-

er the grid-based framework, namely GRID, GRID-A and GDCF-

R. The shortest running time on each step is marked in the bold-

ace. First, we observe that the running time of the partitioning

tep of all compared methods is not significantly different, and the

ime used to build HGB is not excessive when considering overall

unning time of GDCF-UR. Next, the running time of the labeling

tep becomes nonnegligible on high-dimensional dataset. For ex-

mple, the percentage of the running time of the labeling step of

RID is 0.03% on the 3D dataset, while such percentage becomes

.68% on the 54D dataset. For GRID-A, the percentage is 1.7% and

4.47%, respectively. Such observation indicates that the neighbour

rid query has a great impact on the overall running time on high-

imensional data. For our proposed approach, though the running

ime of the labeling step increases from 0.02 to 183.78, it still out-

erforms the baselines significantly, which derives a clear facilita-

ion. In addition, we observed that the labeling step under the pro-

osed HGB structure runs almost 43 × , 35 × faster than of GRID
nd GRID-A on PAMAP2 dataset, respectively, as shown in Table 5 .

t proves that querying neighbour grids under our proposed HGB

tructure is effective on high-dimensional data.

We further observed the running time of merging step domi-

ates the overall performance on both low and high-dimensional

atasets. As a result, techniques focusing on improving such step

ay guarantee performance gain. Our GDCF-UR, with the help of

luster forest, cuts down redundant merging operations and thus

cquires the clear time-saving. For example, GDCF-UR performs

47 × faster than GRID in merging step when d = 3 . This efficiency

lso applies to high-dimensional data as shown in the table that

DCF-UR runs 105 × faster than GRID, and even 48 × faster than

RID-A in the merging step on the 54D dataset.

.2.6. UR versus LDF

In this section, we examine the GDCF framework running in the

R and LDF orders as we know that running GDCF in different or-

ers may lead to the different performance (refer to Section 6.1.2).

or this purpose, we additionally generate six datasets using URG

see Section 7.1.1) in 10D and 20D with different spreading radii (r)

hat denote how far the objects are generated from the cluster ori-

in. Note that the smaller r the denser datasets become, i.e. we can

onsider the dataset which is generated from r = 5 density-higher

han the datasets which are generated from r = 10 and r = 15 , re-

pectively. Fig. 8 (a) and (b) show the running time, and Fig. 8 (c)

nd (d) show the number of merging operations of GDCF-UR and

DCF-LDF on the datasets. First, we can see that GDCF-LDF runs

learly faster than GDCF-UR when r = 5 (high-density dataset) on

oth datasets, as shown in Fig. 8 (a) and (b). This empirically indi-

ates that running GDCF in the LDF order can better utilize the

luster forest on high-density datasets. As we expect, when the

ataset is sparser GDCF-UR can archive a better performance. We

an see this phenomenon in the same figures on both datasets

rom r = 5 , 10 , 15 , respectively. Considering 10D dataset (Fig. 8 (a)),

DCF-UR is 4.5 × slower than GDCF-LDF when r is set to 5; how-

ver, the gaps of their performances become closer as r = 10 , and

hen r = 15 GDCF-UR eventually runs faster than GDCF-LDF. We

an also find a similar observation on the 20D dataset. We con-

lude that GDCF in the LDF order can better handle the high-

ensity databases.

However, it is interesting to notice that GDCF-UR outperforms

DCF-LDF in most cases in terms of the number of merging op-

rations as depicted in Fig. 8 (c) and (d), even in case of the

282 T. Boonchoo, X. Ao and Y. Liu et al. / Pattern Recognition 90 (2019) 271–284

Fig. 8. UR vs LDF.

Fig. 9. Scalability.

g

=

H

c

a

t

t

t

s

i

s

d

s

i
high-density dataset that GDCF-LDF is found to be better in terms

of running time. In general, we do not have such prior knowl-

edge about the density of the database. Considering the real-

world datasets in Fig. 5 (e) and (f), the performances of GDCF-UR

and GDCF-LDF are comparable; however, we know that GDCF-UR

can optimize the merging operations better than GDCF-LDF does

(Fig. 7, Fig. 8 (c) and (d)). We then suggest running GDCF in the UR

order in general cases that we do not know the distribution of the

database, while GDCF-LDF is preferable if the database is known to

be highly dense.

7.2.7. Scalability

Finally, we examined the scalability of the proposed algorithms

as we increased the input size/data dimension. In particular, we
enerated datasets by using URG and set n to 3, 5, 7 on each d

 10, 15, 20. Then we obtained nine datasets, and we run both

GB and GDCF-UR on each of them. First, we visualized the exe-

ution time by fixing the data dimension and varying the data size

s shown in Fig. 9 (a)–(c). Interestingly, from the figure, we view

he performance of both HGB and GDCF-UR that they rise lower

han linear increase. Furthermore, GDCF-UR rises much slower

han HGB. We analyze that though GDCF-UR theoretically has the

ame time complexity of merging step as HGB in the worst case,

t can still dramatically reduce some of the symmetric and tran-

itive redundant merging operations. Thus, it scales well to large

atasets. We second examined the scalability to the data dimen-

ion and showed in Fig. 9 (d)–(f). From the figure, we can find sim-

lar observations as the previous investigation that both HGB and

T. Boonchoo, X. Ao and Y. Liu et al. / Pattern Recognition 90 (2019) 271–284 283

G

G

8

q

w

b

d

s

S

S

S

f

m

e

g

t

g

p

t

s

i

t

s

a

i

d

b

v

r

t

t

a

s

A

R

2

u

C

R

t

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
DCF-UR scale well as the data dimension increases. Additionally,

DCF-UR is more stable to the variation of data dimension.

. Conclusions and future work

Grid-based DBSCAN is a well-developed algorithm which re-

uires O (n log n) time to solve for 2-dimensional data. However,

e pointed out that it suffered from two problems, i.e. neigh-

our explosion and merging redundancies, on higher dimensional

ata. In this paper, we proposed a novel GDCF algorithm to address

uch problems. GDCF is an improved algorithm of Grid-based DB-

CAN which can produce the exact same results as the original DB-

CAN with significant improvement on the performance efficiency.

pecifically, we devised HGB structure to index non-empty grids

or efficient neighbour grid queries. Further, GDCF intergraded a

erging management strategy such that we can safely prune an

xcessive amount of redundant merging computation. We also sug-

ested two orders in the merging, namely UR and LDF, to optimize

he merging computation. Although the complexity of proposed al-

orithm is the same as the traditional Grid-based DBSCAN, the pro-

osed algorithm can run up to three orders of magnitude faster

han the traditional Grid-based DBSCAN on the six real-world and

ynthetic datasets.

For future work, although GDCF can mitigate the redundancies

n the merging step at the grid level, the merge-checking between

wo grids still needs to perform nearest neighbour search. As a re-

ult, it will be an interesting direction to develop an approximate

lgorithm that can exploit the grid shape and determine the merg-

ng without fully performing the nearest neighbour search. Second,

espite the remarkable success achieved by the current density-

ased clustering algorithms, it is still not trivial for them to scale to

ery large data. Therefore, designing parallel and distributed algo-

ithms for grid-based DBSCAN will be an interesting problem such

hat they can be run on very large databases. Finally, how to select

he right parameters of density-based clustering algorithms, e.g. ε
nd MinPTS in DBSCAN, on various datasets remains an open re-

earch problem from the data mining perspective.

cknowledgements

The research work is partially supported by the National Key

esearch and Development Program of China under Grant No.

017YFB1002104 , the National Natural Science Foundation of China

nder Grant No. U1811461 , 61602438 , 91846113 , 61573335 , the

CF-Tencent Rhino-Bird Young Faculty Open Research Fund No.

AGR20180111. This work is also funded in part by Ant Financial

hrough the Ant Financial Science Funds for Security Research.

eferences

[1] L. Deutsch , D. Horn , The weight-shape decomposition of density estimates: a

framework for clustering and image analysis algorithms, Pattern Recognit. 81
(2018) 190–199 .

[2] J. Yu , R. Hong , M. Wang , J. You , Image clustering based on sparse patch align-
ment framework, Pattern Recognit. 47 (11) (2014) 3512–3519 .

[3] M. Devanne , S. Berretti , P. Pala , H. Wannous , M. Daoudi , A.D. Bimbo , Motion

segment decomposition of rgb-d sequences for human behavior understand-
ing, Pattern Recognit. 61 (2017) 222–233 .

[4] M. Carullo, E. Binaghi, I. Gallo, An online document clustering technique for
short web contents, Pattern Recognit. Lett. 30 (10) (2009) 870–876, doi: 10.

1016/j.patrec.20 09.04.0 01 .
[5] H. Xie , G. Tian , H. Chen , J. Wang , Y. Huang , A distribution density-based

methodology for driving data cluster analysis: a case study for an extend-
ed-range electric city bus, Pattern Recognit. 73 (2018) 131–143 .

[6] I.A. Maraziotis, S. Perantonis, A. Dragomir, D. Thanos, K-nets: clustering

through nearest neighbors networks, Pattern Recognit. (2018), doi: 10.1016/j.
patcog.2018.11.010 .

[7] J. Wang , Z. Deng , K.-S. Choi , Y. Jiang , X. Luo , F.-L. Chung , S. Wang , Distance
metric learning for soft subspace clustering in composite Kernel space, Pattern

Recognit. 52 (2016) 113–134 .
[8] C. Zhong , D. Miao , R. Wang , A graph-theoretical clustering method based
on two rounds of minimum spanning trees, Pattern Recognit. 43 (3) (2010)

752–766 .
[9] M. Ester , H.-P. Kriegel , J. Sander , X. Xu , et al. , A density-based algorithm for

discovering clusters in large spatial databases with noise., in: SIGKDD, 1996 .
[10] R.T. Ng , J. Han , Clarans: a method for clustering objects for spatial data mining,

IEEE TKDE (2002) .
[11] N.A . Yousri , M.S. Kamel , M.A . Ismail , A distance-relatedness dynamic model

for clustering high dimensional data of arbitrary shapes and densities, Pattern

Recognit. 42 (7) (2009) 1193–1209 .
[12] D. Xu , Y. Tian , A comprehensive survey of clustering algorithms, Ann. Data Sci.

(2015) .
[13] W. Wang , J. Yang , R. Muntz , et al. , Sting: a statistical information grid approach

to spatial data mining, in: VLDB, 1997 .
[14] J.A . Hartigan , M.A . Wong , Algorithm as 136: a k-means clustering algorithm, J.

R. Stat. Soc. (1979) .

[15] M. Ankerst , M.M. Breunig , H.-P. Kriegel , J. Sander , Optics: ordering points to
identify the clustering structure, in: SIGMOD, 1999 .

[16] Y. Zhu , K.M. Ting , M.J. Carman , Density-ratio based clustering for discovering
clusters with varying densities, Pattern Recognit. 60 (2016) 983–997 .

[17] M. Chen , L. Li , B. Wang , J. Cheng , L. Pan , X. Chen , Effectively clustering by find-
ing density backbone based-on knn, Pattern Recognit. 60 (2016) 4 86–4 98 .

[18] P. Viswanath , V.S. Babu , Rough-dbscan: a fast hybrid density based clustering

method for large data sets, Pattern Recognit. Lett. 30 (16) (2009) 1477–1488 .
[19] Fast density clustering strategies based on the k-means algorithm, Pattern

Recognit. 71 (2017) 375–386 .
20] C. Böhm , R. Noll , C. Plant , B. Wackersreuther , Density-based clustering using

graphics processors, in: CIKM, 2009 .
[21] S. Brecheisen , H.-P. Kriegel , M. Pfeifle , Parallel density-based clustering of com-

plex objects, in: W.-K. Ng, M. Kitsuregawa, J. Li, K. Chang (Eds.), Advances in

Knowledge Discovery and Data Mining, 2006 .
22] D. Birant , A. Kut , St-dbscan: An algorithm for clustering spatial-temporal data,

Data Knowl. Eng., 2007 .
23] P. Kröger , H.-P. Kriegel , K. Kailing , Density-connected subspace clustering for

high-dimensional data, in: SIAM, 2004 .
[24] X. Xu , M. Ester , H.-P. Kriegel , J. Sander , A distribution-based clustering algo-

rithm for mining in large spatial databases, in: Proceedings of the Fourteenth

International Conference on Data Engineering, in: ICDE ’98, 1998 .
25] H.-P. Kriegel , M. Pfeifle , Density-based clustering of uncertain data, in: SIGKDD,

2005 .
26] X. Wang , H.J. Hamilton , Dbrs: A density-based spatial clustering method with

random sampling, in: K.-Y. Whang, J. Jeon, K. Shim, J. Srivastava (Eds.), Ad-
vances in Knowledge Discovery and Data Mining, 2003 .

[27] H.-P. Kriegel , M. Pfeifle , ‘1 + 1 > 2’: merging distance and density based clus-

tering, in: DASFAA, 2001 .
28] J.L. Bentley , Multidimensional binary search trees used for associative search-

ing, Commun. ACM (1975) .
29] N. Beckmann , H.-P. Kriegel , R. Schneider , B. Seeger , The r ∗-tree: an efficient

and robust access method for points and rectangles, in: SIGMOD, 1990 .
30] Y. Chen , S. Tang , N. Bouguila , C. Wang , J. Du , H. Li , A fast clustering algorithm

based on pruning unnecessary distance computations in DBSCAN for high-di-
mensional data, Pattern Recognit. 83 (2018) 375–387 .

[31] K.M. Kumar , A.R.M. Reddy , A fast DBSCAN clustering algorithm by accelerating

neighbor searching using groups method, Pattern Recognit. 58 (2016) 39–48 .
32] B. Borah , D. Bhattacharyya , An improved sampling-based DBSCAN for large

spatial databases, in: ICISIP, 2004 .
[33] A. Gunawan , M. de Berg , A faster algorithm for DBSCAN, Master’s thesis, Tech-

nical University of Eindhoven, 2013 .
34] T. Sakai , K. Tamura , H. Kitakami , Cell-based dbscan algorithm using minimum

bounding rectangle criteria, in: DASFAA, 2017 .

[35] J. Gan , Y. Tao , Dbscan revisited: mis-claim, un-fixability, and approximation, in:
SIGMOD, 2015 .

36] B. Welton , E. Samanas , B.P. Miller , Mr. scan: extreme scale density-based clus-
tering using a tree-based network of gpgpu nodes, in: SC, 2013 .

[37] M.M.A. Patwary , N. Satish , N. Sundaram , F. Manne , S. Habib , P. Dubey , Pardicle:
parallel approximate density-based clustering, in: SC, 2014 .

38] S.T. Mai , I. Assent , M. Storgaard , Anydbc: an efficient anytime density-based

clustering algorithm for very large complex datasets, in: SIGKDD, 2016 .
39] A. Zhou , S. Zhou , J. Cao , Y. Fan , Y. Hu , Approaches for scaling dbscan algorithm

to large spatial databases, J. Comput. Sci. Technol. (20 0 0) .
40] C.-F. Tsai , C.-T. Wu , S. Chen , Gf-dbscan; a new efficient and effective data clus-

tering technique for large databases, in: MUSP, 2009 .
[41] Y. Zhao , C. Zhang , Y.-D. Shen , Clustering high-dimensional data with low-order

neighbors, in: WI, 2004 .

42] Z. Yanchang , S. Junde , Agrid: an efficient algorithm for clustering large high-
dimensional datasets, in: K.-Y. Whang, J. Jeon, K. Shim, J. Srivastava (Eds.), Ad-

vances in Knowledge Discovery and Data Mining, 2003 .
43] S. Mahran , K. Mahar , Using grid for accelerating density-based clustering, in:

CIT, 2008 .
44] E. Schubert , J. Sander , M. Ester , H.P. Kriegel , X. Xu , Dbscan revisited, revisited:

why and how you should (still) use DBSCAN, in: ACM Trans. Database Syst.,

2017 .
45] Y. He , H. Tan , W. Luo , H. Mao , D. Ma , S. Feng , J. Fan , Mr-dbscan: an efficient

parallel density-based clustering algorithm using mapreduce, in: ICPADS, 2011 .
46] S.T. Mai , M.S. Dieu , I. Assent , J. Jacobsen , J. Kristensen , M. Birk , Scalable and

interactive graph clustering algorithm on multicore cpus, in: ICDE, 2017 .

http://dx.doi.org/10.13039/501100012166
https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0001
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0001
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0001
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0002
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0002
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0002
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0002
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0002
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0003
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0003
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0003
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0003
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0003
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0003
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0003
https://doi.org/10.1016/j.patrec.2009.04.001
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0005
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0005
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0005
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0005
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0005
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0005
https://doi.org/10.1016/j.patcog.2018.11.010
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0008
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0008
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0008
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0008
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0009
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0009
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0009
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0009
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0009
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0009
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0010
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0010
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0010
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0011
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0011
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0011
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0011
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0012
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0012
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0012
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0013
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0013
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0013
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0013
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0013
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0014
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0014
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0014
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0015
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0015
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0015
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0015
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0015
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0016
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0016
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0016
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0016
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0017
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0017
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0017
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0017
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0017
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0017
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0017
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0018
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0018
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0018
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0019
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0020
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0020
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0020
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0020
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0020
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0022
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0022
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0022
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0023
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0023
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0023
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0023
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0024
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0024
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0024
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0024
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0024
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0025
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0025
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0025
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0026
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0026
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0026
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0027
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0027
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0027
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0028
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0028
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0029
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0029
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0029
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0029
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0029
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0030
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0030
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0030
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0030
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0030
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0030
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0030
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0031
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0031
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0031
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0032
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0032
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0032
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0033
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0033
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0033
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0035
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0035
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0035
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0036
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0036
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0036
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0036
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0037
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0037
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0037
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0037
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0037
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0037
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0037
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0038
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0038
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0038
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0038
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0039
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0039
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0039
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0039
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0039
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0039
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0040
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0040
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0040
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0040
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0041
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0041
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0041
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0041
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0042
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0042
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0042
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0043
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0043
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0043
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0044
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0044
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0044
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0044
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0044
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0044
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0045
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0045
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0045
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0045
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0045
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0045
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0045
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0045
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0046
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0046
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0046
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0046
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0046
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0046
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0046

284 T. Boonchoo, X. Ao and Y. Liu et al. / Pattern Recognition 90 (2019) 271–284

s

Y

C

C

l

W

t

M

r

o

h

p

T

o

A

Q

T

v

H

i

N

c

[47] Y. Kim , K. Shim , M.-S. Kim , J.S. Lee , Dbcure-mr: an efficient density-based clus-
tering algorithm for large data using mapreduce, Inf. Syst. 42 (2014) 15–35 .

[48] P.K. Agarwal , H. Edelsbrunner , O. Schwarzkopf , E. Welzl , Euclidean minimum
spanning trees and bichromatic closest pairs, in: SoCG, 1990 .

[49] M. Lichman, UCI machine learning repository, 2013.
[50] A. Reiss , D. Stricker , Introducing a new benchmarked dataset for activity mon-

itoring, in: ISWC, 2012 .
[51] J. Sander , M. Ester , H.-P. Kriegel , X. Xu , Density-based clustering in spatial

databases: the algorithm gdbscan and its applications, DMKD (1998) .

[52] P. Fränti , S. Sieranoja , K-means properties on six clustering benchmark
datasets, Appl. Intell. 48 (12) (2018) 4743–4759 .

Thapana Boonchoo completed his B.S. degree in Computer Science from Tham-

masat University, Pathumthani, Thailand, in 2012, and M.S. degree in Computer
Science from Tsinghua University, Beijing, China, in 2016. Currently, he is a Ph.D.

candidate of the Key Laboratory of Intelligent Information Processing, Institute of
Computing Technology, CAS, University of Chinese Academy of Sciences, Beijing,

China. His research interests include data clustering algorithms, machine learning,

and data mining.

Xiang Ao is an Associate Professor of Institute of Computing Technology, Chinese

Academy of Sciences. He received the Ph.D. degree in Computer Science from In-
stitute of Computing Technology, Chinese Academy of Sciences in 2015, and a B.S.

degree in Computer Science from Zhejiang University in 2010. His research interests
include mining patterns from large and complex data, and financial data mining. He

has published several papers in some top tier journals and conference proceedings,

uch as IEEE TKDE, IEEE ICDE, WWW, IJCAI, SIGIR etc.
ang Liu received the B.S. degree in Mathematics from Nanjing University, Nanjing,
hina, in 2017. Currently, he is a Ph.D. candidate of the Key Laboratory of Intelli-

gent Information Processing, Institute of Computing Technology, CAS, University of
hinese Academy of Sciences, Beijing, China. His research interests include machine

earning, and data mining.

eizhong Zhao is currently an Associate Professor in the School of Computer, Cen-

ral China Normal University, Wuhan, China. He received the B.E. degree and the

.S. degree from Shandong University, P.R. China, in 20 04 and 20 07 respectively. He
eceived the Ph.D. degree from Institute of Computing Technology, Chinese Academy

f Sciences, in 2010. His general area of research is data mining and machine learn-
ing.

Fuzhen Zhuang is an Associate Professor in the Institute of Computing Technology,
Chinese Academy of Sciences. His research interests include transfer learning, ma-

chine learning, data mining, multi-task learning and recommendation systems. He

as published more 70 papers in some prestigious refereed journals and conference
roceedings, such as IEEE Transactions on Knowledge and Data Engineering, IEEE

ransactions on Cybernetics, ACM Transactions on Intelligent Systems and Technol-
gy, Information Sciences, Neural Network, IJCAI, AAAI, WWW, ICDE, ACM CIKM,

CM WSDM, SIAM SDM and IEEE ICDM.

ing He is a Professor as well as a doctoral tutor in the Institute of Computing

echnology, Chinese Academy of Science (CAS), and he is a Professor at the Uni-

ersity of Chinese Academy of Sciences (UCAS). He received the B.S degree from
ebei Normal University in 1985, and the M.S. degree from Zhengzhou University

n 1987, both in mathematics. He received the Ph.D. degree in 20 0 0 from Beijing
ormal University in fuzzy mathematics and artificial intelligence. His interests in-

lude data mining, machine learning, classification, fuzzy clustering.

http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0047
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0047
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0047
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0047
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0047
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0048
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0048
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0048
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0048
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0048
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0049
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0049
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0049
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0050
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0050
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0050
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0050
http://refhub.elsevier.com/S0031-3203(19)30050-0/sbref0050
http://refhub.elsevier.com/S0031-3203(19)30050-0/othref0002
http://refhub.elsevier.com/S0031-3203(19)30050-0/othref0002
http://refhub.elsevier.com/S0031-3203(19)30050-0/othref0002

	Grid-based DBSCAN: Indexing and inference
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 DBSCAN
	3.2 2D grid-based DBSCAN
	3.3 Grid-based DBSCAN when d 3

	4 GDCF Framework
	4.1 Motivation and framework of GDCF

	5 Indexing with HGB
	5.1 Complexity analysis

	6 The GDCF Algorithm
	6.1 Concepts
	6.1.1 Cluster forest
	6.1.2 Merging orders

	6.2 The overall algorithm
	6.3 Correctness of GDCF

	7 Experiments
	7.1 Experimental settings
	7.1.1 Datasets
	7.1.2 Compared methods and parameter settings

	7.2 Experimental results
	7.2.1 Clustering result quality
	7.2.2 Overall performance
	7.2.3 Effectiveness of HGB
	7.2.4 Effectiveness of cluster forest
	7.2.5 A closer look
	7.2.6 UR versus LDF
	7.2.7 Scalability

	8 Conclusions and future work
	Acknowledgements
	References

