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Abstract

Graph Transformers (GTs), as emerging foundational encoders for graph-
structured data, have shown promising performance due to the integration
of local graph structures with global attention mechanisms. However, the
complex attention functions and their coupling with graph structures incur
significant computational overhead, particularly in large-scale graphs. In
this paper, we decouple graph structures from Transformers and propose the
Graph-Agnostic Linear Transformer (GALiT). In GALiT, graph structures
are solely utilized to denoise raw node features before training, as our findings
reveal that these denoised features have integrated the main information of
the graph structure and can replace it to guide Transformers. By excluding
graph structures from the training and inference stages, GALiT serves as a
graph-agnostic model which significantly reduces computational complexity.
Additionally, we simplify the linear attention functions inherited from tra-
ditional Transformers, which further reduces computational overhead while
still capturing the relationships between nodes. Through weighted combina-
tion, we integrate the denoised features into the attention mechanism, as our
theoretical analysis reveals the key role of the synergy between linear atten-
tion and denoised features in enhancing representation diversity. Despite de-
coupling graph structures and simplifying attention mechanisms, our model
surprisingly outperforms most GNNs and GTs on benchmark graphs. Experi-
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mental results indicate that GALiT achieves high efficiency while maintaining
or even enhancing performance.

Keywords: Graph Neural Network, Graph Transformer, Linear Attention,
Graph-Agnostic Model

1. Introduction

Learning on graphs containing nodes and edges is a fundamental problem
in data mining, with extensive applications in social and natural sciences [1,
2, 3, 4, 5, 6, 7]. A major challenge is to extract effective node representations
from graph-structure data for various downstream tasks, especially under
limited computational resources.

As emerging foundational encoders, Graph Transformers (GTs) [8, 9, 10,
11] have shown promising performance in learning node representations for
graph-structured data. Unlike Graph Neural Networks (GNNs) [12, 13, 14,
15] recursively aggregating information from neighboring nodes, GTs adap-
tively aggregate information from all nodes with the global attention mecha-
nism inherited from traditional Transformers [16]. Meanwhile, they leverage
graph structures to generate edge embeddings [9], guide the learning of atten-
tion weights [17], or directly combine Transformers with GNNs [11]. There-
fore, due to the integration of graph structures with Transformers, GTs can
utilize local relational information while capturing global latent relationships,
thereby achieving superior expressiveness compared to GNNs. Nevertheless,
these advantages are achieved at the expense of efficiency, which limits the
applicability of GTs on large-scale graphs.

The coupling of graph structures with Transformers is a primary factor
affecting the scalability of GTs. Several efforts [18, 17, 19, 11] have been
devoted to improving the scalability of GTs. SGFormer [11] combines Trans-
formers with only a shallow GNN to enhance the scalability, but sacrifices
the expressiveness of multi-layer GNNs and does not eliminate the compu-
tational overhead introduced by graph structures. Contrastively, we argue
that decoupling graph structures from Transformers is a more effective way
to eliminate the complexity induced by graph structures. To illustrate this in
a simple case, we first denoise the raw node features using graph structures.
Then the denoised features are directly put into a two-layer MLP without
the graph structure information. The results in Figure 1 show that the MLP
with denoised features achieves better performance in terms of both efficacy

2



Figure 1: Inspirational results for node classification on benchmark graphs, including
testing accuracy and training time per 100 epochs. We find that merely utilizing the raw
node features denoised through graph structures with a two-layer MLP not only achieves
effective classification results but also significantly reduces computational overhead. These
results inspire our simplification of existing Graph Transformers.

and efficiency. Therefore, we believe that the denoised raw node features
have already integrated the main information of the graph structure and can
be utilized to guide the adaptive aggregation process within Transformers.

Additionally, the complex attention functions in existing GTs introduce
unnecessary computational overhead and increase the risk of overfitting.
Specifically, feature vectors are transformed into query and key vectors through
separate linear transformations, followed by computing attention weights us-
ing scaled dot-product. To reduce the O(N2) complexity of the traditional
Softmax attention [16], recent studies [9, 17, 20, 11] have introduced lin-
ear attention [21, 22] into GTs and achieved O(N + E) complexity, making
them applicable to large-scale graphs. To further simplify the linear atten-
tion mechanism and reduce computational overhead, we replace the complex
attention functions with low-parameter weighted or mapped cosine similar-
ity. Moreover, through weighted combination, we integrate denoised features
into the attention mechanism, as our theoretical analysis reveals the key
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role of the synergy between linear attention and denoised features in en-
hancing representation diversity. Experimental results demonstrate that our
simplification can reduce computational overhead while still capturing the
relationships between nodes.

In this paper, we integrate the above two techniques of decoupling graph
structures and simplifying attention mechanisms into general GT frame-
works, and propose our model named Graph-Agnostic Linear Transformer
(GALiT). In GALiT, graph structures are solely utilized to obtain denoised
raw node features before training. These pre-processed features are cached
and then guide the adaptive aggregation process within Transformers. There-
fore, GALiT serves as a model that is agnostic to the graph structure during
the training and inference phases. This distinction is crucial, as it signifi-
cantly reduces computational complexity by confining the graph dependency
to a one-time, low-cost pre-processing step. Additionally, we simplify the
linear attention functions inherited from traditional Transformers, further
reducing computational overhead while still capturing the relationships be-
tween nodes. Despite decoupling graph structures and simplifying atten-
tion mechanisms, our model surprisingly outperforms most GNNs and GTs
on benchmark graphs. Experimental results demonstrate that GALiT can
achieve high efficiency while maintaining or even enhancing performance.
Beyond current results, we believe that the proposed methodology could es-
tablish a new technical path for the design of simplified graph encoders.

In summary, our contributions can be listed as follows:

• We reveal that decoupling graph structures from Transformers is an
effective way to reduce the computational complexity of Graph Trans-
formers.

• We simplify the traditional linear attention mechanism in GTs using
a weighted or mapped form of cosine similarity, which further reduces
computational overhead while still capturing the relationships between
nodes.

• Extensive experiments are conducted on homophilic, heterophilic, and
large-scale graphs to validate the rationality and effectiveness of the
proposed model.

The remainder of this paper is organized as follows. Section 2 introduces
definitions and the problem statement of this paper. Section 3 details the
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proposed GALiT framework, and Section 4 illustrates the experimental re-
sults. Section 5 surveys the related research in the literature, and Section 6
concludes the paper.

2. Preliminary

We denote a graph as G = {V , E}, where the node set V = {v1, . . . , vN}
comprises N nodes and the edge set E = {e1, . . . , eE} comprises E edges
including self-loops. Each node is associated with a D-dimensional feature
vector, and all node features are denoted as X ∈ RN×D. The graph struc-
ture of G can be represented as an adjacency matrix A ∈ {0, 1}N×N , where
Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise. Additionally, we denote all
node labels as one-hot vectors Y ∈ {0, 1}N×C , where C is the number of
classes. In general, learning representations on graphs aims to generate node
embeddings Z = f(X,A; θ) ∈ RN×d that are useful for downstream tasks,
where d denotes the dimension of embeddings and θ denotes the parameters
of model f .

2.1. Graph Neural Networks
Graph Neural Networks (GNNs) [12, 13, 23, 24] are classic encoders

for graph-structured data. The core of GNNs lies in the message-passing
paradigm, which recursively aggregates information from neighboring nodes
to compute the node representations:

Z̄
(l)
i = f (l)

(
Z

(l)
i

)
, Z

(l+1)
i =

∑
(i,j)∈E

S̃
(l)
ij Z̄

(l)
j , (1)

where Z
(l)
i denotes the node embedding at the l-th layer, and f (l) denotes

feature transformation. There are different strategies for computing the ag-
gregation weights S̃ij. For instance, Graph Convolutional Networks (GCN)
[12] employ the normalized adjacency matrix as fixed aggregation weights,
i.e., Ã = D−1/2AD−1/2, where D is the diagonal matrix with Dii being
the degree of node vi. In contrast, Graph Attention Networks (GAT) [13]
introduce an attention mechanism to adaptively compute the aggregation
weights.
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2.2. Graph Transformers
Graph Transformers (GTs) [8, 25, 26, 27] have emerged as powerful graph

encoders. Unlike GNNs recursively aggregating information from neighboring
nodes, GTs adaptively aggregate information from all nodes:

Z̄
(l)
i = f (l)

(
Z

(l)
i

)
, Z

(l+1)
i =

∑
j

S̃
(l)
ij Z̄

(l)
j , (2)

To compute the aggregation weights S̃ij, existing GTs typically inherit the
Softmax attention mechanism from traditional Transformers. Specifically,
feature embeddings Z are transformed into query vectors Q ∈ RN×d and key
vectors K ∈ RN×d through linear transformations, followed by the computa-
tion of attention weights with scaled dot-product and non-linear normaliza-
tion:

Q = ZWQ, K = ZWK , S̃ = softmax
(
QK⊤
√
d

)
, (3)

where WQ,WK ∈ Rd×d are learnable projection matrices and bias vectors,
respectively. Meanwhile, various strategies have been employed to integrate
graph structures with attention mechanisms, such as generating edge em-
beddings, guiding the learning of attention weights, or directly combining
Transformers with GNNs. Generally, these strategies can be viewed as ex-
pansions in the computation of the aggregation weights S̃ij.

2.3. Graph Signal Denoising
Recent studies [28, 29, 30, 11] have interpreted graph representation learn-

ing as a graph signal denoising process, unifying various GNNs and GTs un-
der this framework. Specifically, the noisy signal is denoted by Z̄, and the
objective of graph signal denoising is to recover the clean signal Z from the
following optimization problem:

L =
1

2

∑
i

∥∥Zi − Z̄i

∥∥2 + λ

4

∑
i,j

S̃ij ∥Zi − Zj∥2 , (4)

where ∥·∥ denotes the L2 norm. In this framework, the first term embod-
ies the fidelity principle, which guides Z to align with Z̄; the second term
embodies the smoothness principle, which employs Laplacian regularization
to ensure the smoothness of Z across the attention graph S̃; λ > 0 serves
as a trade-off weight parameter. Both the message-passing mechanism of
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Figure 2: Illustration of our proposed GALiT model on an example graph, with node
features X and adjacency matrix A. Before training, the graph structure A is utilized
to obtain the denoised raw node features X̂. These pre-processed features can replace
the direct use of the graph structure, guiding the adaptive aggregation process within
Transformers. During training and inference, the initial raw feature embeddings Z(0)

and the pre-processed feature embeddings Ẑ(0) are generated by a shallow neural layer
fI . In the global linear attention module, our simplified linear attention functions are
used to capture latent relationships and propagate information across all node pairs with
O(N) complexity. The outputs from the attention module are combined with the denoised
feature embeddings Ẑ(0), and then serve as the input for the next layer. After L layers,
the output node representations Z(L) are transformed by a shallow neural layer fO for
downstream tasks (e.g. node classification).

GNNs and the attention mechanism of GTs can be interpreted as methods
to approximate the solution to the above optimization problem, with their
differences lying in how they construct the attention graph S̃.

3. Methodology

In this section, we elaborate on the two proposed techniques of decoupling
graph structures and simplifying attention mechanisms, and integrate them
into general GT frameworks.

3.1. Model Overview
In this work, we propose the GALiT model, which incorporates two key

innovations: decoupling the graph structure from the Transformer frame-
work and simplifying the attention mechanism. As illustrated in Figure 2,
the graph structure A is first used to obtain denoised node features X̂ before
training. These pre-processed features replace the direct use of the graph
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structure, thus guiding the adaptive aggregation within the Transformer lay-
ers. During both training and inference, the raw feature embeddings Z(0) and
the denoised feature embeddings Ẑ(0) are generated by a shallow neural layer
fI . The simplified linear attention mechanism in the global attention mod-
ule captures latent node relationships and propagates information efficiently
with O(N) complexity. The output of this module is combined with the
denoised feature embeddings and serves as input for the subsequent layers.
After passing through L layers, the final node embeddings Z(L) are processed
by a shallow neural layer fO for downstream tasks such as node classification.

3.2. Decoupling Graph Structures
In existing Graph Transformers, the coupling of graph structures with

Transformers incurs significant computational overhead, particularly in large-
scale graphs. To enhance the scalability of GTs, we propose to decouple graph
structures from Transformers, ensuring they are not involved in the training
and inference stages.

Inspired by the interpretation of graph representation learning as an adap-
tive graph signal denoising process, we explore a simple case in which raw
node features are denoised along the graph structure in an unsupervised man-
ner. Specifically, we treat the raw node features X as a noisy signal and aim
to recover the clean signal X̂ ∈ RN×D by solving the following optimization
problem:

L =
1

2

∑
i

∥∥∥X̂i −Xi

∥∥∥2 + ξ

4

∑
(i,j)∈E

∥∥∥∥∥ X̂i√
Dii

− X̂j√
Djj

∥∥∥∥∥
2

. (5)

In this framework, the first term guides X̂ to be close to X, while the second
term applies Laplacian regularization to ensure the smoothness of X̂ across
the graph structure. The hyper-parameter ξ > 0 serves as a trade-off weight
between these two terms. The above convex optimization problem has an
analytical solution, and an approximate solution can be obtained through
recursive computation:

X̂ = γ
(
I− (1− γ)Ã

)−1

X, (6)

X̂
.
=
〈
(1− γ)ÃX̂(k) + γX

〉
K
, X̂(0) = X, (7)
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where γ = (1 + ξ)−1 ∈ (0, 1), and K denotes the number of recursive itera-
tions. Due to the O(N3) complexity of matrix inversion, recursive computa-
tion is commonly used to approximate the denoised features X̂, particularly
in the case of large-scale graphs.

We explore the direct use of denoised features X̂ for node classification
with a two-layer MLP, and results are shown in Figure 1. We find that
this approach outperforms typical GNNs, even without integrating graph
structures during training and inference stages. This finding suggests that
the denoised features X̂ have already integrated the main information of
the graph structure and can replace it to guide the adaptive aggregation
process within Transformers. Therefore, we solely utilize the graph structure
to obtain denoised raw node features X̂ before training. These pre-processed
features are cached and then input into each Transformer layer:

Z(0) = fI(X), Ẑ(0) = fI(X̂), (8)

Z̄(l) = f (l)
(
Z(l)
)
, Z(l+1) = (1− α)S̃(l)Z̄(l) + αẐ(0), (9)

where α ∈ (0, 1) is a weight hyper-parameter, and Z(0) ∈ RN×d and Ẑ(0) ∈
RN×d are the initial raw feature embeddings and pre-processed feature em-
beddings, respectively, obtained through a feature transformation fI (e.g., a
single-layer MLP). In this framework, S̃ is computed solely by the global
attention mechanism inherited from Transformers, making this a graph-
agnostic model, which excludes graph structures from training and inference.

We theoretically analyze the proposed modification based on the inter-
pretation of each Transformer layer as an optimization step for an adaptive
graph signal denoising problem.

Theorem 1. For any given attention matrix S̃ ∈ RN×N , Eq. (9) is equivalent
to a gradient descent operation with step size α ∈ (0, 1) for the following
optimization problem:

L =
1

2

∑
i

∥∥∥Zi − Ẑ
(0)
i

∥∥∥2 + λ

4

∑
i,j

S̃ij ∥Zi − Zj∥2 , (10)

where the first term guides Z to be close to Ẑ(0), while the second term ensures
the smoothness of Z across the attention graph Sij. The hyper-parameter
λ = 1/α− 1 serves as a trade-off weight between the above two terms.
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Proof. The gradient of L w.r.t. Zi can be computed by:

∂L
∂Zi

= Zi − Ẑ
(0)
i +

1− α

α

∑
j

S̃ij (Zi − Zj) . (11)

The gradient descent operation with step size α that aims to minimize the
cost function L at the current layer l is given by the following equations:

Z
(l+1)
i = Z̄

(l)
i − α

∂L
∂Zi

∣∣∣∣
Z=Z̄(l)

(12)

= (1− α)
∑
j

S̃
(l)
ij Z̄

(l)
j + αẐ

(0)
i + (1− α)

(
1−

∑
j

S̃
(l)
ij

)
Z̄

(l)
i . (13)

Due to the normalization of the attention weights, i.e.,
∑

j S̃ij = 1, Eq. (13)
can be simplified as:

Z(l+1) = (1− α)S̃(l)Z̄(l) + αẐ(0). (14)

Thus, Eq. (9) is proven to be equivalent to a gradient descent operation for
the given graph signal denoising problem.

Based on the above theoretical analysis, each modified Transformer layer
can also be interpreted as an approximation to solving the adaptive graph
signal denoising problem described by Eq. (10). In this framework, the re-
vised fidelity term guides Z to be close to Ẑ(0), which has been empirically
proven to integrate the main information of the graph structure.

3.3. Simplifying Attention Mechanisms
Traditional Transformers mainly adopt softmax attention mechanism,

given by S = exp(QK⊤/
√
d). Due to this nonlinear similarity measure,

the attention map S is constructed by computing the similarity between all
query-key pairs, resulting in a computational complexity of O(N2). This has
created a computational bottleneck, limiting the application of Transformers
on large graphs. Comparably, linear attention [21] is considered as an effec-
tive alternative, which restricts the computational complexity from O(N2) to
O(N). Specifically, purpose-designed kernels are employed to approximate
the original similarity function:

Sij = ϕ(Qi)ϕ(Kj)
⊤, S̃ij =

Sij∑
k Sik

, (15)
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where ϕ represents a feature mapping function that transforms the input vec-
tors into a higher-dimensional space. Hence, each layer of the self-attention
mechanism described by Eqs. (2) and (3) can be reformulated as:

Zi =
ϕ(Qi) ·

(∑
j ϕ(Kj)

⊤Z̄j

)
ϕ(Qi) · (

∑
k ϕ(Kk)⊤)

. (16)

Both
∑

j ϕ(Kj)
⊤Z̄j and

∑
k ϕ(Kk) have a computational complexity of O(N).

Notably, these calculations are performed only once for all nodes, thus the
overall complexity of the modified self-attention is O(N).

However, linear attention mechanisms typically reduce the model’s ex-
pressiveness, and kernel functions depend heavily on careful design, which
may introduce computational overhead and training instability [31]. Related
work [32] has mathematically proven that kernel-based linear attention usu-
ally suffers from unbounded gradients, causing unstable convergence during
training: ∣∣∣∣∂pik∂sij

∣∣∣∣ ≤ |sij|−1 , (17)

where sij = ϕ(Qi)ϕ(Kj)
⊤ and pik = sik/

∑
j sij. Since |sij|−1 can be ar-

bitrarily large, the gradient of kernel-based linear attention has no upper
bound.

Although recent studies [9, 17, 20, 11] have integrated linear attention
[31, 21] into GTs, these methods still rely on the complex attention func-
tion inherited from traditional Transformers, in which feature vectors are
transformed into query and key vectors through separate linear transforma-
tions. Although more complex attention functions can capture more intricate
relationships, they also introduce unnecessary computational overhead and
increase the risk of overfitting. Drawing on methods developed for graph
structure learning to model latent relationships between nodes [33, 34, 35],
we extend linear attention to a generalized form by using node embeddings
directly as inputs:

S̃ = c+ g(Z)h(Z)⊤, (18)

where g(·) and h(·) are feature transformations with the same output dimen-
sion; and c > 0 is a constant. To obtain non-negative attention weights and
ensure bounded gradients, we further constrain the forms of g(·) and h(·) as
follows:

g(Z) =
g∗(Z)

√
c− ϵ

Norm(g∗(Z))
, h(Z) =

h∗(Z)
√
c− ϵ

Norm(h∗(Z))
, (19)
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where ϵ > 0 is a small constant; g∗(·) and h∗(·) are feature transformations
with the same output dimension; and Norm(·) denotes a normalization oper-
ation, using either the L2 norm or the Frobenius norm. Specifically, the L2
norm is computed for single nodes, while the Frobenius norm is computed
over all nodes:

L2 : Norm (g∗(Zi)) = ∥g∗(Zi)∥2 ,
F : Norm (g∗(Z)) = ∥g∗(Z)∥F .

(20)

To ensure the stability of the attention mechanism, we establish bounds on
the attention weights and their gradients. The following theorem formalizes
these bounds.

Theorem 2. Under the given constraints, the attention weights have a lower
bound, and the gradients have an upper bound. Specifically,

sij ≥ ϵ,

∣∣∣∣∂pik∂sij

∣∣∣∣ ≤ |sij|−1 ≤ ϵ−1. (21)

Proof. We start by demonstrating the lower bound for the attention weights:

sij = c+ g(Zi)h(Zj)
⊤

≥ c−
∣∣g(Zi)h(Zj)

⊤∣∣
≥ c− ∥g(Zi)∥2 ∥h(Zj)∥2
≥ c− (

√
c− ϵ)2 = ϵ,

(22)

where we have used the following steps:

• The first inequality follows from the definition sij = c+ g(Zi)h(Zj)
⊤.

• The second inequality applies the Cauchy-Schwarz Inequality.

• The final inequality uses ∥g(Zi)∥22 ≤ c − ϵ and ∥h(Zj)∥22 ≤ c − ϵ, as
stated in Eqs. (19) and (20).

Next, we show the upper bound for the gradients of the attention weights:∣∣∣∣∂pik∂sij

∣∣∣∣ ≤ |sij|−1 ≤ ϵ−1, (23)
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Table 1: Details of the four attention functions.
Attention Function Number of Parameters Complexity

cos 0 -
w-cos d O(Nd)
m-cos (d+ 1)d O(Nd2)
qk-cos 2(d+ 1)d O(2Nd2)

In summary, the theorem ensures that the attention mechanism remains
stable by providing the upper bound on the attention weights and their
gradients, thereby promoting stable convergence during training. In general
cases, we set c = 1.

Based on extended linear attention, each layer of the global attention
mechanism described by Eqs. (2) and (3) can be reformulated as:

Zi =
c
∑

j Z̄j + g(Zi)
∑

j h(Zj)
⊤Z̄j

cN + g(Zi)
∑

j h(Zj)⊤
. (24)

Based on the framework of extended linear attention, we introduce four
alternative similarity functions, as we experimentally show that different
graphs are suited to different attention mechanisms. We substitute the com-
plex attention function with simpler, low-parameter alternatives: cosine sim-
ilarity (cos), weighted cosine similarity (w-cos), and mapped cosine similarity
(m-cos). These simplifications are mathematically represented as follows:

cos : Qi = Ki = Zi,

w-cos : Qi = Ki = Zi ◦w⊤,

m-cos : Qi = Ki = ZiWM + bM .

(25)

In w-cos, w ∈ Rd is a learnable vector that weights each dimension of the
feature embeddings Z, and ◦ denotes the Hadamard product. In m-cos,
WM ∈ Rd×d and bM ∈ Rd are a learnable projection matrix and a bias
vector for feature transformation. For consistency, we refer to the traditional
attention function, which computes queries and keys through separate linear
transformations, as query-key cosine similarity (qk-cos). Note that m-cos is
essentially a simplified version of qk-cos, i.e., WQ = WK and bQ = bK .

We summarize and compare the parameter counts and computational
complexities of the four introduced attention functions (cos, w-cos, m-cos,
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qk-cos) in Table 1. We find that the simplified attention functions signifi-
cantly reduce both the number of parameters and computational overhead.
Our experiments will further demonstrate that these simplifications are still
capable of capturing the relationships between nodes.

To compute the aggregation weights S̃ij, existing GTs typically inherit the
attention mechanism from traditional Transformers, as described by Eq. (3).
Due to the non-linear Softmax normalization, the attention map S̃ is con-
structed by computing the similarity between all query-key pairs, resulting in
O(N2) computational complexity. This creates a computational bottleneck,
limiting the applicability of GTs on large-scale graphs. In contrast, linear
attention is considered as an effective alternative, which reduces the compu-
tational complexity from O(N2) to O(N). Specifically, the attention weights
S̃ij are directly computed through the dot-product of normalized queries and
keys:

Q = ZWQ, Q̃ =
Q

∥Q∥p
, K = ZWK , K̃ =

K

∥K∥p
, (26)

S = Q̃K̃⊤ + J, D̃ = diag
(
Q̃(K̃⊤1) +N1

)
, S̃ = D̃−1S, (27)

where ∥·∥p typically denotes the L2 norm or the Frobenius norm, J is an
N ×N all-one matrix to ensure the non-negativity of attention weights, and
1 is an N -dimensional all-one column vector to compute the diagonal matrix
D̃ for the normalization of attention weights. By introducing the linear
attention mechanism, each Transformer layer described by Eq. (2) can be
reformulated as:

Z̄(l) = f (l)
(
Z(l)
)
, Z(l+1) = D̃−1

(
Q̃(K̃⊤Z̄(l)) + JZ̄(l)

)
. (28)

By changing the order of matrix operations, specifically by computing K̃⊤Z̄
prior to Q̃K̃⊤, the linear attention can achieve O(N) complexity, thereby
significantly reducing computational overhead compared to the Softmax at-
tention.

3.4. Graph-Agnostic Linear Transformers
We integrate the above two techniques of decoupling graph structures and

simplifying attention mechanisms into general GT frameworks, and name our
model as Graph-Agnostic Linear Transformer (GALiT). In GALiT, the graph
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structure A is solely utilized to approximately obtain the denoised raw node
features X̂ before the training and inference stages:

X̂ =
〈
(1− γ)ÃX̂(k) + γX

〉
K
, X̂(0) = X, (29)

where Ã is the symmetric normalized adjacency matrix, γ ∈ (0, 1) is the
trade-off weight, and K is the number of recursive iterations. The pre-
processed features X̂ are cached and then guide the adaptive aggregation
process within Transformers:

Z(0) = fI(X), Ẑ(0) = fI(X̂), Z̄(l) = f (l)
(
Z(l)
)
, (30)

Z(l+1) = (1− α)D̃−1
(
Q̃(K̃⊤Z̄(l)) + JZ̄(l)

)
+ αẐ(0), (31)

where fI denotes the feature transformation (e.g., a single-layer MLP) used
to generate the initial raw feature embeddings Z(0) and the denoised feature
embeddings Ẑ(0). f (l) can be either a shallow neural layer or an identity map-
ping. The matrices Q̃, K̃, and D̃ are computed following the linear attention
mechanism described by Eq. (26)∼(27), with α ∈ (0, 1) serving as the trade-
off weight parameter. Additionally, we simplify the attention mechanism
inherited from traditional Transformers, as described by Eq. (18), which fur-
ther reduces computational overhead while still capturing the relationships
between nodes. Notably, this simplification is still within the framework of
linear attention described by Eq. (26)∼(27).

After L layers of propagation, we obtain the node representations Z(L) ∈
RN×d and employ a shallow neural layer fO to generate the predicted labels
Ŷ ∈ RN×C . Subsequently, we compute the cross-entropy loss using the
ground truth labels Y ∈ {0, 1}N×C to guide the training process:

Ŷ = fO
(
Z(L)

)
, L(Ŷ;Y) = −

N∑
i=1

C∑
c=1

Yic log(Ŷic). (32)

By integrating the techniques of decoupling graph structures and simplify-
ing attention mechanisms, our proposed GALiT reduces the computational
complexity from O(N + E) to O(N), which surpasses existing GNNs and
GTs. Simultaneously, our experiments will demonstrate that these simplifi-
cations do not compromise the model’s expressiveness capacity. Therefore,
we believe that the proposed methodology could establish a new technical
path for the design of simplified graph encoders.
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3.5. Complexity Analysis
We compare the time complexity of GALiT with other state-of-the-art

efficient Graph Transformers, including NodeFormer [17] and SGFormer [11],
in Table 2. While all these methods utilize linear attention to reduce the
quadratic complexity of global attention, significant differences exist in how
they handle graph structural information.

Both NodeFormer and SGFormer rely on graph-based regularization or
message passing during the training process, which introduces a dependency
on the number of edges E. Consequently, their training complexity remains
O(N + E). In contrast, GALiT completely decouples the graph structure
from the training loop. By confining the graph dependency to a one-time
pre-processing step (feature denoising), the training complexity of GALiT
is strictly O(N). As we will demonstrate in the experimental section, the
cost of pre-processing is negligible compared to training time. This linear
scalability with respect to the number of nodes makes GALiT significantly
more efficient and memory-friendly for massive graphs where E ≫ N .

Table 2: Complexity comparison of different Graph Transformers.

Model Attention
Complexity

Structural
Dependency

Overall Training
Complexity

NodeFormer O(N) Edge Regularization O(N + E)
SGFormer O(N) GNN Component O(N + E)

GALiT O(N)
Decoupled

(Pre-processing) O(N)

3.6. Theoretical Analysis
In this section, we theoretically elucidate why the integration of simple

linear attention with structural information can effectively enhance node rep-
resentations on graphs.

One of the factors restricting the expressiveness of linear attention is fea-
ture diversity, which can be partly attributed to the rank of the attention
matrix [22]. The non-linear attention matrix usually has full rank, thereby
exhibiting diversity when aggregating features. However, achieving full rank
is challenging for linear attention. Mathematically, the rank of the linear at-
tention matrix P is constrained by the number of nodes N and the dimension
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of embeddings d for each head:

rank(P) = rank
(
f(Z)g(Z)⊤

)
≤ min {rank (f(Z)) , rank (g(Z))}
≤ min {N, d} = d.

(33)

In graph-based tasks, N is typically much greater than d (N ≫ d), thus
the upper bound of the rank is restricted to a lower ratio, leading to the
homogenization of many rows in the attention map.

The key to overcoming the low-rank problem lies in integrating structural
information from graphs. Empirically, the rank of the normalized adjacency
matrix from real-world graphs is often close to N . For example, in benchmark
graph datasets such as Cora, CiteSeer, and PubMed, the ranks exceed 90%
of the total number of nodes. Therefore, through a weighted combination of
the linear attention matrix and the normalized adjacency matrix, the upper
bound of rank for the resulting attention matrix approaches N , and its lower
bound approaches N − d:

rank
(
αP+ (1− α)Ã

)
≤ min

{
N, rank(P) + rank(Ã)

}
.
= min {N, rank(P) +N} = N,

rank
(
αP+ (1− α)Ã

)
≥
∣∣∣rank(P)− rank(Ã)

∣∣∣
.
= |rank(P)−N | ≥ N − d.

(34)

Moreover, employing the multi-head attention mechanism can mitigate the
low-rank problem, given that averaging across multiple attention matrices
can raise the upper bound of rank for the resulting attention matrix:

rank(P̃) = rank
(∑H

h=1 P
(h)/H

)
≤ min {N,Hd} . (35)

Notably, the above strategies incur little computational overhead. The
computational complexity is O(N) for the global attention P̃Z and O(E)
for the inherent attention ÃZ, thus the overall computational complexity is
O(N + E). The GALiT method proposed in this paper further decouples
the graph structure from the Transformer, i.e., the graph structure is not
used during both the training and inference phases. Therefore, the over-
all computational complexity is further reduced to O(N). It is important
to note that this decoupling does not affect the theoretical analysis process
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mentioned above, as the graph structure is used for information aggregation
between nodes during the preprocessing stage. Hence, the integration of de-
noised features and the attention mechanism can be viewed as a collaborative
interaction between the graph structure and the attention mechanism.

4. Experiments

In this section, we conduct a comprehensive evaluation of the proposed
GALiT model on benchmark datasets, with the aim of answering the follow-
ing research questions:

• RQ1: Does GALiT outperform the state-of-the-art methods on bench-
mark graphs?

• RQ2: What is the scalability and efficiency of GALiT on large-scale
graphs?

• RQ3: How do the key components contribute to the performance of
GALiT?

• RQ4: What is the sensitivity of GALiT with respect to different hyper-
parameters?

• RQ5: How well does the empirical evidence align with the theoretical
justifications of GALiT?

4.1. Results on Medium-scale Graphs (RQ1)
4.1.1. Datasets

We first perform experiments on six commonly used benchmark graph
datasets, which include both homophilic and heterophilic graphs. The fol-
lowing describes each dataset:

• Cora, CiteSeer, and PubMed: These are citation networks where each
node represents a scientific paper, and edges represent citation links
between the papers. Node features are derived from the bag-of-words
representation of the documents, with the task being the classification
of academic topics. These datasets are homophilic, meaning that con-
nected nodes tend to share the same class label.
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Table 3: Information for node classification datasets.
Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
CiteSeer 3,327 4,732 3,703 6
PubMed 19,717 44,324 500 3

Squirrel 5,201 216,933 2,089 5
Chameleon 2,277 36,101 2,325 5

Actor 7,600 29,926 931 5

• Squirrel and Chameleon: These datasets are web link networks de-
rived from Wikipedia, where nodes represent web pages, and edges rep-
resent mutual links between them. Node features capture the presence
of specific nouns on the pages, and the classification task is to cate-
gorize the web pages based on their average monthly traffic. Unlike
the citation networks, these are heterophilic graphs, where connected
nodes are more likely to belong to different classes.

• Actor: This dataset represents an actor co-occurrence network, where
nodes correspond to actors, and edges denote co-occurrences of actors
on the same Wikipedia pages. The task is to classify actors based on
their Wikipedia profiles. Like the web link networks, this dataset is
heterophilic in nature.

Table 6 summarizes the details of these six datasets.

4.1.2. Baselines
We evaluate the performance of GALiT by comparing it with represen-

tative baseline methods. 1) Traditional GNNs: MLP [36], GCN [12], Graph-
SAGE [37], GAT [13], SGC [15], and APPNP [14]. These traditional GNNs
follow the message-passing paradigm propagating information along observed
graph structures. Notably, MLP can be viewed as a special case of GCN
without considering graph structures. 2) Heterophilic GNNs: JKnet [38],
H2GCN [39], and GloGNN [40]. These GNN-based methods are specifically
designed for heterophilic graphs, where neighboring nodes have lower sim-
ilarity compared to homophilic graphs. Nevertheless, these methods still
rely on observed graph structures. 3) Graph Transformers: ANS-GT [41],
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Table 4: Performance comparison for node classification on homophilic graphs. Mean and
standard deviation of testing accuracy (%) are listed. The best results are bolded and the
second-best results are underlined.

Datasets Cora CiteSeer PubMed

# Statistics
# Nodes 2,708 3,327 19,717
# Edges 5,429 4,732 44,324

Traditional GNNs

MLP 57.8 ± 0.1 61.2 ± 0.1 73.2 ± 0.1
GCN 81.5 ± 0.5 71.1 ± 0.4 79.2 ± 0.2

GraphSAGE 82.1 ± 0.3 71.8 ± 0.4 79.2 ± 0.3
GAT 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3
SGC 80.9 ± 0.2 72.1 ± 0.3 78.5 ± 0.1

APPNP 83.3 ± 0.4 71.7 ± 0.5 80.1 ± 0.3

Heterophilic GNNs
JKNet 81.5 ± 0.5 70.7 ± 0.9 78.7 ± 0.4
H2GCN 82.3 ± 0.7 71.6 ± 0.5 79.6 ± 0.5
GloGNN 81.7 ± 0.4 72.3 ± 0.7 78.4 ± 0.5

Graph Transformers

ANS-GT 82.8 ± 1.1 71.1 ± 0.7 79.4 ± 0.9
NAGphormer 82.3 ± 0.7 70.9 ± 0.9 78.5 ± 0.5
NodeFormer 82.2 ± 0.9 72.5 ± 1.1 79.9 ± 1.0
DIFFormer 83.4 ± 1.3 74.6 ± 0.8 78.3 ± 0.5
SGFormer 84.5 ± 0.8 72.6 ± 0.2 80.3 ± 0.6
GALiT 85.1 ± 0.6 75.6 ± 0.8 80.8 ± 0.4

NAGphormer [18], NodeFormer [17], DIFFormer [20], and SGFormer [11].
These methods incorporate the global attention mechanism of Transformers
to capture latent relations for enhancing representation on graphs. They
also employ strategies such as node sampling or linear attention to reduce
computational overhead.

4.1.3. Settings
All datasets adhere to the widely accepted fixed splits. Specifically,

Cora, CiteSeer, and PubMed use the fixed splits proposed in [12], with
20 nodes per class for training, 500 nodes for validation, and 1000 nodes
for testing. Squirrel and Chameleon follow the splits from [42], which fil-
ters overlapped nodes in the original datasets and introduce 10 fixed splits
of 48%/32%/20% nodes for training/validation/testing. Actor adheres to
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Table 5: Performance comparison for node classification on heterophilic graphs. Mean and
standard deviation of testing accuracy (%) are listed. The best results are bolded and the
second-best results are underlined.

Datasets Squirrel Chameleon Actor

# Statistics
# Nodes 5,201 2,277 7,600
# Edges 216,933 36,101 29,926

Traditional GNNs

MLP 36.5 ± 1.8 36.7 ± 4.7 34.0 ± 0.5
GCN 39.5 ± 1.5 40.9 ± 4.1 29.7 ± 0.3

GraphSAGE 36.1 ± 2.0 37.8 ± 4.1 30.1 ± 0.7
GAT 35.6 ± 2.1 39.2 ± 3.1 29.9 ± 0.6
SGC 39.4 ± 1.9 38.8 ± 2.1 27.7 ± 1.0

APPNP 35.6 ± 1.8 39.0 ± 3.2 32.1 ± 1.7

Heterophilic GNNs
JKNet 39.8 ± 1.4 39.5 ± 4.0 32.2 ± 0.9
H2GCN 35.1 ± 1.1 38.8 ± 3.1 34.8 ± 2.0
GloGNN 35.1 ± 1.2 41.0 ± 3.5 36.6 ± 1.4

Graph Transformers

ANS-GT 40.9 ± 1.8 43.5 ± 3.0 36.1 ± 1.6
NAGphormer 37.9 ± 2.1 38.8 ± 2.0 34.3 ± 0.9
NodeFormer 38.5 ± 1.5 34.7 ± 4.1 36.9 ± 1.0
DIFFormer 40.3 ± 0.8 44.8 ± 2.7 37.9 ± 1.2
SGFormer 41.8 ± 2.2 44.9 ± 3.9 37.9 ± 1.1
GALiT 42.3 ± 1.8 45.7 ± 4.2 38.2 ± 1.1

the splits proposed in [43], with 10 fixed splits of 48%/32%/20% nodes for
training/validation/testing. For all the compared methods, we cite the re-
ported results under these fixed splits, if available. Otherwise, we report
the average accuracy and standard deviation across 10 runs under the fixed
training/validation/testing splits. Details on all hyper-parameter settings
are provided in the supplemental material.

4.1.4. Results
The experimental results are presented in Table 4 and 5. We observe

that GALiT significantly outperforms the traditional GNNs. This
suggests that our proposed model, by decoupling graph structures and simpli-
fying attention mechanisms, can effectively leverage both local relational in-
formation and global latent relationships to enhance node representations. In
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Table 6: Information for large-scale node classification datasets.

Dataset Nodes Edges Features Classes

ogbn-arxiv 169,343 1,166,243 128 40
pokec 1,632,803 30,622,564 65 2

Amazon2M 2,449,029 61,859,140 100 47

particular, GALiT’s ability to handle complex graphs with reduced computa-
tional complexity indicates its practical potential for large-scale applications,
where traditional methods might struggle due to the heavy computational
overhead.

Moreover, we notice that GALiT outperforms traditional GNNs on het-
erophilic graphs, and it even surpasses GNNs specifically designed for
heterophily. One possible explanation is that when graphs contain sub-
stantially more spurious edges than valid edges, their structural information
becomes nearly inconsequential or challenging to leverage for downstream
tasks. Instead of designing intricate mechanisms to filter the original graph
structures, it might be more effective to directly reconstruct the graph topol-
ogy. This approach seems to be especially beneficial in the case of noisy or
sparse graphs, where traditional methods tend to lose their effectiveness due
to the inherent complexity of handling irrelevant edges.

Furthermore, compared to the state-of-the-art graph Transform-
ers, GALiT also demonstrates impressive performance. The compar-
ison with ANS-GT and NAGphormer underscores that our simplified linear
attention mechanism exhibits expressiveness comparable to non-linear Soft-
max attention. While NodeFormer, DIFFormer, and SGFormer also adopt
linear attention, they retain the query-key paradigm inherent to traditional
Transformers and integrate GCN to leverage graph structural information.
In contrast, our model utilizes more simplified linear attention functions and
decouples graph structures from Transformers. This simplification not only
improves computational efficiency but also enhances GALiT’s ability to gen-
eralize across a wide variety of graph types without being overly constrained
by graph-specific structural biases.
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4.2. Results on Large-scale Graphs (RQ2)
4.2.1. Datasets

To assess the scalability and efficiency of our model, we extend our ex-
periments to three large-scale datasets, which pose additional challenges due
to their size and complexity. These datasets include:

• ogbn-arxiv: This dataset is a large citation network where each node
represents an Arxiv paper, and edges indicate citation relationships.
The classification task is to predict the subject areas of Arxiv CS pa-
pers. This dataset is significantly larger than the benchmark datasets,
with over 169,000 nodes and 1.16 million edges, making it a more com-
plex challenge for node classification.

• pokec: Derived from a social network, the pokec dataset includes nodes
that represent user profiles, and edges represent interactions or relation-
ships between users. The goal is to predict the gender of users. The
pokec dataset contains over 1.6 million nodes and 30.6 million edges,
offering a significant test for both model scalability and computational
efficiency.

• Amazon2M: This dataset is based on the Amazon Co-Purchasing net-
work, where nodes represent products and edges represent frequently
co-purchased items. The task is to classify products into their top-level
Amazon categories. The Amazon2M dataset is the largest in our study,
consisting of over 2.4 million nodes and more than 61 million edges,
testing the limits of the model’s scalability.

Table 6 summarizes the statistical details of these three large-scale datasets.

4.2.2. Baselines
Considering the applicability to large-scale graphs, we use efficient GNNs

as comparison methods, including MLP [36], GCN [12], GAT [13], SGC [15],
and SIGN [44]. Furthermore, we compare our method with three graph
Transformers that utilize linear attention to reduce the computational com-
plexity, namely NodeFormer [17], DIFFormer [20], and SGFormer [11].
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Table 7: Performance comparison for node classification on large-scale graphs. Mean and
standard deviation of testing accuracy (%) are listed. The best results are bolded and the
second-best results are underlined.

Datasets
Large-scale Graphs

ogbn-arxiv pokec Amazon2M

# Nodes 169,343 1,632,803 2,449,029
# Edges 1,166,243 30,622,564 61,859,140

MLP 55.50 ± 0.23 60.04 ± 0.04 63.47 ± 0.11
GCN 71.74 ± 0.29 62.12 ± 1.39 83.88 ± 0.10
GAT 69.90 ± 0.12 62.37 ± 0.73 85.20 ± 0.31
SGC 67.79 ± 0.27 52.11 ± 0.82 81.23 ± 0.12
SIGN 70.28 ± 0.25 68.01 ± 0.25 80.97 ± 0.29

NodeFormer 59.90 ± 0.42 70.32 ± 0.45 87.85 ± 0.24
DIFFormer 72.21 ± 0.60 69.24 ± 0.76 89.24 ± 0.28
SGFormer 72.63 ± 0.13 73.76 ± 0.24 89.09 ± 0.10
GALiT 73.05 ± 0.22 73.77 ± 0.03 91.52 ± 0.02

4.2.3. Settings
For ogbn-arxiv, we follow the public OGB splits [45]. For pokec, we

follow the splits used in the recent work [17], which randomly splits the
nodes into 10% for training, 10% for validation, and 80% for testing in each
round. For Amazon2M, we follow the splits used in the recent work [11], which
randomly splits the nodes into 50% for training, 25% for validation, and
25% for testing in each round. Details of the hyper-parameter settings are
provided in the supplemental material.

4.2.4. Results
The results are presented in Table 7. We observe that GALiT consistently

outperforms the traditional GNNs. This suggests that even on large-scale
graphs, the denoised raw node features can also integrate the main infor-
mation of the graph structure, and the global linear attention can capture
latent relationships beyond the original graph structure to enhance the node
representations. Additionally, our method surpasses existing linear graph
Transformers across all the datasets. This highlights the advantages of our
framework, which decouples graph structures from Transformers and simpli-
fies the attention mechanisms while maintaining or even enhancing model
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Figure 3: Performance comparison for node classification on large graphs. Training and
inference times are presented.

performance.
We further clarify that the term “Graph-Agnostic” in our model primarily

refers to the training and inference stages. While the graph structure is used
in the pre-processing stage for feature denoising, this operation is highly
efficient and incurs negligible computational overhead compared to model
training. To validate this, we report the pre-processing time across different
datasets in Table 8. The results show that even for massive graphs like
Amazon2M, the pre-processing takes only about 1.8 seconds, confirming that
the decoupling strategy effectively removes the burden of graph structures
from the core learning pipeline.

Table 8: Preprocessing time across different datasets.

Dataset ogbn-arxiv Pokec Amazon2M

Time (s) 0.0439± 0.0087 0.4472± 0.1342 1.8150± 0.2926

In Figure 3, we present the training and inference times of various com-
peting GTs on three large-scale graphs. Notably, GALiT demonstrates sig-
nificant improvements in training and inference efficiency compared to these
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Table 9: Performance of GALiT with different attention functions and normalization
methods. Mean and standard deviation of testing accuracy (%) are listed. The best
results are bolded and the second-best results are underlined.

Dataset CiteSeer PubMed Squirrel Chameleon

w/o att 73.3 ± 0.9 80.0 ± 0.4 40.5 ± 2.4 43.0 ± 3.6

cos
L2 75.7 ± 0.6 80.3 ± 0.7 41.9 ± 2.3 43.3 ± 3.1
F 75.0 ± 0.7 80.8 ± 0.4 41.8 ± 2.3 43.4 ± 3.2

w-cos
L2 75.5 ± 0.8 80.5 ± 0.7 42.1 ± 2.1 43.8 ± 3.7
F 75.0 ± 0.7 80.6 ± 0.5 41.7 ± 2.3 43.5 ± 3.4

m-cos
L2 75.6 ± 0.9 79.7 ± 0.6 42.3 ± 1.8 45.7 ± 4.8
F 74.7 ± 1.0 80.6 ± 0.4 41.6 ± 2.3 44.2 ± 3.2

qk-cos
L2 75.6 ± 0.8 79.6 ± 0.6 41.9 ± 2.2 45.3 ± 3.9
F 75.0 ± 0.9 80.7 ± 0.4 41.5 ± 2.7 44.1 ± 3.1

linear attention-based GTs. Importantly, SGFormer enhances scalability by
reducing the number of model layers, at the cost of diminishing the model’s
expressive power. In contrast, GALiT achieves a reduction in computational
overhead while enhancing model performance. This allows GALiT to main-
tain high accuracy even on large-scale graphs.

4.3. Ablation Study (RQ3)
In our proposed GALiT framework, we refer to the traditional attention

function as query-key cosine similarity (qk-cos), and introduce three simpli-
fied attention functions: cosine similarity (cos), weighted cosine similarity
(w-cos), and mapped cosine similarity (m-cos). To validate the effective-
ness of these simplified attention functions, we conduct experiments on four
benchmark datasets: CiteSeer, PubMed, Squirrel, and Chameleon. Fur-
thermore, to demonstrate the global linear attention mechanism can enhance
node representations by leveraging denoised raw node features, we conduct
experiments without the attention mechanism (i.e., α = 1), rendering the
model equivalent to directly utilizing denoised raw node features with MLPs.

The experimental results are presented in Table 9. We observe that our
model using any functions of the linear attention mechanism consistently
outperforms the version without attention. This validates that leveraging
global information is indeed beneficial for enhancing node repre-
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sentations on graphs. We further observe that different datasets perform
better with different forms of attention. For instance, CiteSeer and PubMed
are better suited with the cosine similarity, while Squirrel and Chameleon
show better performance with the mapped cosine. This suggests that the
query-key paradigm is not always the best strategy across vari-
ous graphs, highlighting the adaptability and flexibility of our extended
linear attention framework. Additionally, we find that using only the non-
parametric cosine similarity for global attention leads to significant improve-
ments over traditional GNNs. Notably, cosine similarity introduces much
lower computational overhead compared to other forms of attention. This
indicates that simple or even non-parametric global linear attention
also has powerful expressive capabilities.

To provide guidance on selecting the optimal attention function, we fur-
ther analyze the relationship between graph homophily and the performance
of different attention mechanisms. As shown in Table 10, there is a strong cor-
relation between the homophily ratio and the required complexity of the at-
tention function. For graphs with high homophily (e.g., CiteSeer, PubMed),
neighbors tend to share similar labels. In such cases, the denoised features al-
ready aggregate sufficient discriminative information, allowing the simple cos
function to perform optimally. Conversely, for graphs with low homophily
(e.g., Squirrel, Chameleon), neighbors are often dissimilar. Here, the model
relies on more expressive attention functions like m-cos to capture complex,
long-range dependencies and global semantic similarities that local aggrega-
tion might miss. This analysis provides a practical heuristic for practitioners:
utilize simpler attention mechanisms for homophilic graphs and more com-
plex ones for heterophilic graphs.

Table 10: Homophily Ratio vs. Optimal Attention Function Performance.
Dataset CiteSeer PubMed ogbn-arxiv Pokec Squirrel Chameleon

Homophily Ratio ∼ 0.74 (High) ∼ 0.80 (High) ∼ 0.65 (Med) ∼ 0.44 (Low) ∼ 0.22 (Low) ∼ 0.23 (Low)

Best Func. cos cos w-cos m-cos m-cos m-cos

4.4. Sensitivity Analysis (RQ4)
To answer RQ4, we conduct a sensitivity analysis of the hyper-parameters

within our proposed GALiT model. Among these, the most critical hyper-
parameter is γ during the graph signal denoising stage, which determines
the quality of the denoised original node features. A smaller γ indicates a
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Figure 4: Performance of GALiT with different hyper-parameter γ in the graph signal
denoising stage. The accuracy initially increases and then decreases with the rise of γ,
highlighting a trade-off between fidelity and smoothing in the graph signal denoising pro-
cess.

preference for global smoothing over local fidelity during denoising, implying
a greater reliance on the graph structure. Notably, the case where γ = 0 in
our analysis represents the scenario where raw node features are used directly
without any graph-based denoising. As shown in the results, the performance
is suboptimal at γ = 0, validating the necessity of the denoising step.We
select three benchmark graphs for our experiments: CiteSeer, PubMed, and
Squirrel.

The results depicted in Figure 4 reveal that the accuracy initially increases
and then decreases with the rise of γ, highlighting a trade-off between fidelity
and smoothing in denoising. This suggests that too much reliance on local
fidelity can lead to underutilization of structural information. Similarly, an
overemphasis on global smoothing might result in the loss of unique informa-
tion. Moreover, on the heterophilic dataset Squirrel, optimal performance
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is observed at lower γ values, unexpectedly. This dataset, where edges indi-
cate web page links, shows that connected nodes tend to share similarities.
This indicates that the proportion of edge-connected nodes of the same class
does not fully capture the graph’s nature.

In addition to γ, the number of recursive iterations K in the pre-processing
stage is another critical hyper-parameter, analogous to the depth of receptive
fields in GNNs. We analyze the sensitivity of K on three datasets, with K
varying from 1 to 20. The results are reported in Table 11. We observe that
performance generally improves as K increases from 1 to 10, indicating that
aggregating information from a wider neighborhood is beneficial. However,
for K > 10, performance tends to plateau or slightly degrade, likely due
to the over-smoothing issue where node features become indistinguishable.
Based on this analysis, we identify K = 10 as a robust choice that balances
noise removal with feature distinctiveness across most datasets.

Table 11: Sensitivity Analysis of the number of recursive iterations K (Accuracy %).

Dataset K = 1 K = 3 K = 5 K = 10 K = 15 K = 20

CiteSeer 69.0± 1.4 74.5± 0.7 75.2± 1.1 75.6± 0.8 75.4± 0.9 75.1± 0.7
PubMed 75.6± 1.8 80.0± 1.0 80.5± 0.7 80.8± 0.4 80.6± 0.5 80.3± 0.4
Squirrel 36.3± 2.7 41.2± 2.1 42.0± 2.8 42.3± 1.8 41.8± 2.2 41.5± 1.7

4.5. Theory Validation (RQ5)
As discussed in Section 4, our theoretical analysis indicates that the syn-

ergy between linear attention and graph structures can raise both the lower
and upper bounds of rank for the attention matrix. Additionally, the multi-
head attention mechanism can mitigate the low-rank problem, thereby aug-
menting representation diversity. To validate our theoretical justifications,
we conduct experiments on two small-scale graphs, Cora and CiteSeer, given
that the computational complexity of matrix rank is typically O(N3). We
set the embedding dimension d to 256 and the number of attention heads H
to 4. After training, we extract the multi-head attention matrix P̃, the nor-
malized adjacency matrix Ã, and the weighted combined attention matrix
αP̃ + (1 − α)Ã from the first layer of the model. Subsequently, we employ
Singular Value Decomposition to obtain the diagonal matrix containing sin-
gular values. The rank of the matrix is then determined by counting the
number of singular values greater than a fixed threshold of 10−8.
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Figure 5: Visualization of the attention matrices on (a) Cora and (b) CiteSeer. Here, P̃
represents the multi-head attention matrix, Ã denotes the normalized adjacency matrix,
and αP̃ + (1 − α)Ã is their weighted combination. The ranks of the matrices are also
annotated.

The experimental results are presented in Figure 5, where we visualize
these matrices and annotate them with their respective ranks. We observe
that the normalized adjacency matrices Ã are nearly full rank, indicating
that the original graph structures contain rich relational information. We also
observe that the ranks of multi-head attention matrices P̃ consistently exceed
the rank upper bound d of single-head attention matrices. This suggests that
the multi-head attention mechanism alleviates the low-rank problem, thereby
enhancing the model’s expressiveness to some extent. Furthermore, all the
weighted combined attention matrices αP̃ + (1 − α)Ã have full rank. This
demonstrates that the synergy between multi-head linear attention
and graph structures breaks the constraints imposed by the low-
rank problem, thereby enhancing the model’s representation diversity.
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5. Related Work

5.1. Graph Neural Networks
Constructing GNNs with powerful expressiveness is fundamental in graph

machine learning. GNNs typically employ the message-passing paradigm,
recursively aggregating information from neighboring nodes to generate rep-
resentations. Early models such as GCN [12] directly utilized observed struc-
tures for message passing. Subsequent models, such as GAT [13], integrated
attention mechanisms into observed structures, enabling message passing in-
fluenced by attention weights. As research advanced, some models were de-
veloped to tackle challenges including over-smoothing [46], heterophily [47],
imbalance [1], and out-of-distribution [48], yet they still largely rely on orig-
inal graph structures. Moreover, graph structure learning [33] seeks to re-
fine and acquire new structures for enhanced representation. However, due
to computational complexity constraints, it is difficult to capture extensive
latent relationships. Overall, most GNNs lean heavily on observed graph
structures for their assumed reliability and relevance to downstream tasks.

5.2. Graph Transformers
Originating from natural language processing, Transformers [16] have rev-

olutionized various domains with their unique attention mechanisms. Beyond
the local message passing of GNNs, Transformers have emerged as potent
graph encoders [41, 9, 49, 8, 10], capturing latent relations and refining rep-
resentations through global attention. A significant challenge for traditional
Transformers is the necessity to compute attention weights for all query-key
pairs, leading to a computational bottleneck that limits their application on
large-scale graphs. Nonetheless, recent studies have proposed linear Trans-
formers [50], reducing the computational complexity from O(N2) to O(N).
Innovatively, several studies have integrated the linear attention mechanism
into graph representation learning. NodeFormer [17] employs kernelized mes-
sage passing and introduces random feature maps to approximate all-pair
attention. DIFFormer [20] draws inspiration from energy constrained diffu-
sion and introduces a simple normalized linear similarity function, achieving
notable results across various tasks. SGformer [11] further underscores the
potential of shallow linear Transformers in graph-based tasks through empir-
ical and theoretical analysis. However, these methods adopt the query-key
paradigm inherent to traditional Transformers, without exploring alternative
forms of linear attention.
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6. Conclusion

In this work, we propose the Graph-Agnostic Linear Transformer (GALiT),
which is a framework of simplified Graph Transformers applicable to large-
scale graphs. In GALiT, we first utilize graph structures to obtain the de-
noised raw node features before training. These denoised features are then
used to guide the Transformers. Additionally, we simplify the attention func-
tions inherited from traditional Transformers, which further reduces com-
putational overhead while still capturing the relationships between nodes.
Despite decoupling graph structures and simplifying attention mechanisms,
experimental results indicate that GALiT achieves high efficiency while main-
taining or even enhancing model performance. The efficiency and scalability
of our proposed GALiT framework make it a strong candidate for practical
applications in real-world graph learning tasks.
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