
Domain-aware Node Representation Learning for
Graph Out-of-Distribution Generalization

Yi Qiao∗†, Yang Liu∗†§, Qing He∗†, Xiang Ao∗†‡§
∗ Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS),

Institute of Computing Technology, CAS, Beijing 100190, China
Email: {liuyang2023,heqing,aoxiang}@ict.ac.cn

†University of Chinese Academy of Sciencs, Beijing 100049, China
Email: qiaoyi19@mails.ucas.ac.cn

‡Institute of Intelligent Computing Technology, Suzhou, CAS

Abstract—Graph Neural Networks (GNNs) have demonstrated
impressive success across diverse fields when data satisfies in-
distribution (ID) assumption. Nevertheless, GNN performance
significantly declines in cases of distribution shifts between
training and testing graph data. This degradation primarily
stems from spurious correlations between irrelevant domain
information and target labels in out-of-distribution (OOD) sce-
narios. Thus, maximizing the utilization of domain information
becomes imperative. In light of this, we propose a novel approach
named Domain-aware Node Representation Learning (DNRL),
comprehensively incorporates domain information to bolster gen-
eralization capability. Specifically, DNRL selectively interpolates
nodes with the same label but different domains, extending
training data into unseen domains and alleviating the effects
caused by domain-related spurious correlations. Futhermore,
by introducing a domain-aware contrastive learning strategy,
our method implicitly decouples domain information from node
information to learn domain-independent node representations.
Extensive experiments on graph out-of-distribution benchmarks
demonstrate that DNRL can achieve effective OOD generaliza-
tion performance across diverse domains.

Index Terms—graph neural network, out-of-distribution, do-
main augmentation

I. INTRODUCTION

Graph Neural Networks (GNNs) have achieved remarkable
success on multiple graph learning tasks [1]–[6]. Most GNNs
assume in-distribution (ID) data, yet in real-world scenarios,
the testing distribution may deviate from the training distribu-
tion due to unobserved or uncontrolled shifts. This discrepancy
can adversely affect GNN performance. Hence, it is imperative
to learn GNNs with robust out-of-distribution (OOD) general-
ization capabilities.

Several efforts have been dedicated to enhance the gener-
alization capability of GNNs. Invariant learning [7], [8] aims
to capture invariant relationships between features and labels
across different domains, with its efficacy contingent upon the
domain diversity. Moreover, graph data augmentation [9] boost
data diversity and quality by generating new training instances,
thereby improving the model’s generalization ability.

Taking a toy graph in Fig. 1 as an example, where node
colors represent domain information, with shape labels y1 and
y2 in the training set spuriously correlated with the colors blue
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Fig. 1. A toy example of OOD node classification. Left: The label (shape of
the nodes) is spuriously associated with domain (color). Right: Domain-aware
Augmentation.

and red, respectively. Then in the testing set, the model can
easily be affected to misclassify node 1 as y2 and node 2 as y1
by the color. In such an OOD case, graph invariant learning
methods [10] can capture the invariant relationship between
feature and label but cannot avoid spurious correlation when
the number of domains is limited in the training set. Traditional
graph augmentation methods [9] do not use the domain
information thus cannot avoid spurious correlation either. Our
solution is to interpolate the nodes with the same shape but
different colors. Consequently, we obtain node samples with
diverse colors and the spurious correlation between color and
labels would be eliminated for better OOD generalization.

As the mainstream solution for graph OOD problem, exist-
ing graph invariant learning methods do not fully utilize do-
main information [9], [10]. While these methods incorporates
domain information within the loss function, yet this approach
risks constraining the model’s capacity to learn optimal feature
representations. Consequently, the model may overly empha-
size domain disparities at the expense of fundamental feature
characteristics. Moreover, the efficacy of invariant learning
techniques can be influenced by the number of distinct domain.

In this study, we propose a domain-aware node
representation learning method (DNRL) that utilizes domain
information to eliminate the effect of spurious correlations.
Specifically, our method exploits domain information at both
the data level and the representation level to improve the
generalization ability of GNNs. As depicted in Fig. 1(Right),
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Fig. 2. The framework of DNRL on an example graph: Node shape indicates
label and node color represents domain.

DNRL first performs inter-domain interpolation at the data
level, facilitating the generation of new domains within the
same class. This process enables the extension of training data
into new domains and effectively eradicates domain-related
spurious correlations. Furthermore, at the representation level,
we introduce a domain-aware contrastive loss targeting domain
correlations. DNRL implicitly disentangles irrelevant domain
information from node representations, thereby enhancing
OOD robustness. Extensive experimental results demonstrate
that DNRL substantially boosts graph OOD performance
while concurrently enhancing the model robustness.

II. PRELIMINARY

In this work, let X be the input space, Y be the target label
space, and D be the domains. Let (x, y, d) ∼ P (x, y, d) be a
sample, where x denotes the input feature, y denotes the class
label, and d denotes the domain.

Problem Statement. Let G = (V, E) denote a graph,
where V = {v1, . . . , vN}, E ⊆ V × V represent the node
set and edge set respectively. Each node vi is associated
with a feature vector xi ∈ X and a label yi ∈ Y. The
adjacency matrix A ∈ {0, 1}N×N is defined such that Aij = 1
if and only if (vi, vj) ∈ E . Consider the setting where
one predicts the label y ∈ Y based on the input feature
x ∈ X. This paper focuses on the out-of-distribution node
classification and learns a multi-classification function based
on Dtrain = {vi|(xi, yi, di) ∼ Ptrain} to predict the unlabeled
nodes in Dtest = {vi|(xi, yi, di) ∼ Ptest }. Dtrain and Dtest
follow different distributions. Formally,

fθ : (X,A) → Y. (1)

where θ represents the parameters of the model.

III. METHODOLOGY

This section gives a detailed presentation of DNRL, a
domain-aware contrastive graph augmentation method. As
shown in Fig. 2, we selectively interpolate pairs of nodes with
the same label but different domains to generate samples span-
ning new domains. DNRL obtains node embeddings from two
distinct perspectives: the original view and the interpolation-
augmented view. Subsequently, both the original and aug-
mented representations of adversarial samples are fed into
the contrastive loss to learn domain-independent information.
Afterwards, the model is optimized by minimizing the DNRL
loss function, comprising the empirical risk minimization loss
integrated with mixup and contrastive loss.

A. Inter-domain Mixup

We enhance domain generalization robustness through inter-
domain mixup, selectively interpolating node pairs with the
same label but different domains. We incorporate both attribute
features and topological structure in this process. We randomly
sample the Mixup weight λ from a Beta distribution [11] with
a hyperparameter α.

Specifically, for vi, we select vj that has the same label but
belongs to a different domain. Then we mix the node attributes
of two nodes before the input layer:

x̃ij = λxi + (1− λ)xj , if yi = yj and di ̸= dj . (2)

Subsequently, we undertake topological-level interpolation [9].
In each layer of GNNs, message passing and aggregation are
performed for vi and vj to derive the representation:
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if yi = yj and di ̸= dj , (3)

where N (i) denotes the set of neighbors of the node i and
W (l) is the layer-specific trainable weight matrix. Here, h
denotes the intermediate node representations at each layer,
while z represents the final node representations obtained after
layer-wise interpolation. And we interpolate the representa-
tions obtained from the two topologies before the next layer
as shown in Eq.(4), where z

(0)
ij = x̃ij .

z
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Nevertheless, under practical scenarios, it is not always
feasible for each training node sample vi to identify node vj
with the same label but different domain. For such nodes, we
instead encode them by aggregating the interpolated represen-
tation z of their neighbors:

z
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where z
(0)
i = xi holds. In this way, the interpolated repre-

sentation with richer domain information is passed to node
(xi, yi, di) through its neighborhood N (i).



Consequently, the loss of interpolated nodes is:

Lm = E(xi,yi,di)∼Ptrain [ℓm(zi, ỹi)]. (6)

where ỹi = λyi + (1− λ)yj = yi and ℓm is the cross-entropy
loss. Through inter-domain mixup, we shift the domain distri-
bution of the newly generated data away from the original
domain distribution, extending it to unseen domains. This
effectively mitigates domain-related spurious correlations.

B. Domain-aware Contrastive Strategy

Current contrastive methods exhibit limited generalization
capabilities under distribution shifts since they do not consider
the domain information. To mitigate this issue, we incorporate
the domain information into the contrastive learning process,
which selectively identifies positive and negative samples and
generates corresponding augmented sample representations for
graph OOD node classification.

Positive Sample Selection For vi in Dtrain, we identify
positive samples from Dtrain by selecting those nodes with
the same label but different domains, and add them into the
set Pi = {vj | vj ∈ Dtrain, yi = yj , di ̸= dj}.

In this way, data points with different domain information
within a shared label space are brought closer together, so
that the model ignores domain-specific information unrelated
to labels and better utilizes label-related feature information.

Negative Sample Selection For vi in Dtrain, we identify
negative samples from Dtrain by selecting those nodes with
the same domain but different labels, and add them into the
set Ni = {vj | vj ∈ Dtrain, yi ̸= yj , di = dj}.

This not only induces greater separation in the embedding
space for samples with different labels but also leads the model
to disregard spurious domain correlations.

In particular, we acquire node embeddings HPi and HNi

for both positive samples Pi and negative samples Ni via
a GNN encoder, serving as the original view. Additionally,
due to the design of Inter-domain Mixup in section III-A,
the interpolated node representation ZPi

and ZNi
can effec-

tively serve as the interpolation-augmented view. Inter-domain
mixup selects pairs with the same label but different domains
for interpolation, which ensures the node categories for both
positive and negative samples remain unaltered after interpola-
tion. Formally, we denote µ(hi, hj) = s(g(hi), g(hj)), where
s is the cosine similiarity and g is a two-layer multilayer
perceptron (MLP) to enhance the expression power of em-
bedding [12]. We define the sum of similarities between node
vi and set H as:

Si(H) =
∑
hj∈H

eµ(hi,hj)/τ , (7)

where τ is a temperature parameter. Then the contrastive loss
for node vi is shown in Eq.(8).

ℓc(vi) = − log
Si(HPi

) + Si(ZPi
)

Si(HPi
) + Si(ZPi

) + Si(HNi
) + Si(ZNi

)
,

(8)

The contrastive loss in DNRL is defined as the average loss
over all training nodes as shown in Eq.(9).

Lc = E(xi,yi,di)∼Ptrain [ℓc(vi)]. (9)

By adding the contrastive loss Lc to the classification loss
Lm, we optimize the parameter θ of fθ to minimize the overall
loss as shown in Eq.(10).

L = Lm + ηLc. (10)

IV. EXPERIMENTS

A. Experimental Details

1) Datasets: We assessed the generalization capability of
DNRL on the graph OOD benchmark GOOD [13], which
comprises three datasets—GOOD-Cora, GOOD-WebKB, and
GOOD-CBAS—each involving two types of distributional
shifts: covariate shift and concept shift. The first one is citation
netorks, where nodes are documents and edges are citation
links. In GOOD-WebKB, a node represents a webpage and
edges are hyperlinks between webpages. GOOD-CBAS is a
synthetic dataset modified from BA-Shapes [14].

2) Baselines: Using the empirical risk minimization (ERM)
as the initial baseline, we compare our method DNRL with
multiple invariant learning methods, including IRM [7], VREx
[15], GroupDRO [16], SRGNN [17] and EERM [10]. Be-
sides, two typical domain adaption methods DANN [18] and
DeepCoral [19] are used for comparison. We further compare
against the graph data augmentation method Mixup [9].

3) Experimental setup: The code is implemented based on
PyTorch Geometric. To ensure fair comparisons, we use a
three-layer GCN with ReLU activation and a 300-dimensional
hidden layer as the backbone for all methods. The ReLU ac-
tivation function is employed, and the hidden layer dimension
is set to 300. The training process consists of 100 epochs for
three real-world datasets, while the synthetic dataset GOOD-
CBAS runs for 200 epochs. The batch size is selected from
the set {1000, 4096}, and the learning rate is chosen from
{1e−3, 5e−3}. Performance is assessed using the Accuracy
metric, with higher scores indicating better performance.

B. Overall Performance

In TABLE I, we report the accuracy results, revealing
following findings: (1) DNRL consistently achieves the highest
average accuracy over three datasets, outperforming baseline
methods. This suggests that our method exhibits robust domain
generalization capabilities, effectively handling various out-
of-distribution (OOD) scenarios and shift types. (2) Invariant
learning methods, which aim to minimize risk across domains
during the loss function stage, exhibit inconsistent perfor-
mance across different datasets. For instance, while the IRM
method achieves high accuracy on GOOD-WebKB, it fails
on GOOD-Cora. This observation highlights the challenge
of fully and effectively leveraging domain information. (3)
Despite suboptimal performance in a minority of cases, our
methods yield comparable results and consistently outperform
the data-augmented method Mixup. These findings underscore
the robust generalization capabilities of DNRL.



TABLE I
OOD PERFORMANCE COMPARISONS UNDER COVARIATE (COV.) AND CONCEPT (CON.) SHIFT

Dataset GOOD-Cora GOOD-WebKB GOOD-CBAS

Domain word degree university color

Shift cov. con. avg. cov. con. avg. cov. con. avg. cov. con. avg.

ERM 65.06 63.93 64.50 55.12 60.68 57.90 15.08 24.77 19.93 78.57 81.43 80.00
IRM 64.72 63.93 64.33 56.34 61.50 58.92 17.46 28.44 22.95 78.57 80.71 79.64
VREx 63.77 64.44 64.11 54.95 60.55 57.75 15.87 27.52 21.70 77.14 83.57 80.36
GroupDRO 64.53 64.10 64.32 54.95 60.80 57.88 15.87 27.52 21.70 80.00 82.86 81.43
SRGNN 64.53 64.93 64.73 56.11 61.00 58.56 11.11 28.44 19.78 71.43 82.86 77.15
EERM 65.06 62.84 63.95 56.34 58.25 57.30 17.06 27.52 22.29 72.86 65.71 69.29
DANN 65.06 63.96 64.51 55.15 60.55 57.85 14.29 25.69 19.99 78.57 83.57 81.07
DeepCoral 65.04 63.98 64.51 55.82 60.55 58.19 15.87 27.52 21.70 78.57 81.43 80.00
Mixup 63.74 64.60 64.17 56.31 63.23 59.77 19.84 31.19 25.52 77.14 64.29 70.72

DNRL 66.17 65.41 65.79 59.24 64.34 61.79 19.84 32.11 25.98 84.29 80.00 82.15

C. Ablation Study

We conduct two ablation tests to evaluate the validity of
each module. Initially, we evaluate the efficacy of inter-domain
node mixup by switching it to random interpolation, denoted
as “DNRL\DM”. As illustrated in Fig. 3(a) and Fig. 3(b),
DNRL is more effective in all cases, indicating that Inter-
domain succeeds in extending the training data to invisible
domains and improves the generalization of the model. The
removal of the contrast strategy, denoted by “DNRL\DC”,
results in a consistent decrease in the model’s performance
across both datasets. This suggests that the model encounters
challenges in disentangling irrelevant domain information.
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Fig. 3. The validity of Inter-domain Mixup and Contrastive strategy with
domain information.

D. Sensitivity Analysis

Fig. 4(a) illustrates the impact of the loss control hyper-
parameter η. DNRL exhibits a consistent trend across both
datasets, highlighting its stability. Additionally, in Fig. 4(b), we
assess the sensitivity of the hyperparameter α, which regulates
the interpolation ratio. Our results indicate that DNRL exhibits
robustness across various interpolation ratios.
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Fig. 4. Sensitivity of the balance and interpolation ratio.

V. RELATED WORK
To improve the generalization ability of GNNs [20], [21]

under OOD scenarios, prior works have proposed various
strategies to learn node representations. Invariant learning [7],
[8], [17], [22], [23], positioned as the mainstream method
for addressing OOD challenges, aims to exploit the invari-
ant relationships between features and labels across different
distributions while disregarding the spurious correlations. Its
generalization ability relies on the diversity of training envi-
ronments. Data augmentation techniques [9], [24] contribute
to enriching the distribution of training data. The OOD gen-
eralization ability of graph models rely on the diversity and
quality of training data [25], thus, data augmentation methods
are effective in solving the OOD generalization problem. Other
methods [26]–[28] construct new graph network structures
based on the causal inference theory, facilitating the genera-
tion of node and graph representations. Furthermore, recent
research [29] has explored the application of unsupervised
learning for OOD generalization in graph models, specifically
through the framework of information bottlenecks.

VI. CONCLUSION
This paper focuses on the problem of out-of-distribution

generalization for node classification on graph. We introduce
DNRL, a novel model that leverages domain information
in both data and representation spaces. Employing inter-
domain interpolation, DNRL extends data to new domains,
while a domain-aware contrastive strategy enables GNNs to
learn domain-independent node representations. This approach
mitigates spurious correlations, enhancing the model’s gener-
alization capacity.
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