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ABSTRACT
Though Graph Neural Networks (GNNs) have been successful for

fraud detection tasks, they suffer from imbalanced labels due to

limited fraud compared to the overall userbase. This paper attempts

to resolve this label-imbalance problem for GNNs by maximizing

the AUC (Area Under ROC Curve) metric since it is unbiased with

label distribution. However, maximizing AUC on GNN for fraud de-

tection tasks is intractable due to the potential polluted topological

structure caused by intentional noisy edges generated by fraud-

sters. To alleviate this problem, we propose to decouple the AUC

maximization process on GNN into a classifier parameter searching

and an edge pruning policy searching, respectively. We propose a

model named AO-GNN (Short for AUC-oriented GNN), to achieve

AUC maximization on GNN under the aforementioned framework.

In the proposed model, an AUC-oriented stochastic gradient is

applied for classifier parameter searching, and an AUC-oriented

reinforcement learning module supervised by a surrogate reward of

AUC is devised for edge pruning policy searching. Experiments on

three real-world datasets demonstrate that the proposed AO-GNN

patently outperforms state-of-the-art baselines in not only AUC

but also other general metrics, e.g. F1-macro, G-means.
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1 INTRODUCTION
Benefited by the capability of mining profound dependence and

correlations between entities, Graph Neural Networks (GNNs) [12,

33] have been broadly implemented in fraud detection tasks [7, 16,

21, 48, 50, 52]. In particular, due to its message passing scheme,

which aggregates and transforms the representation of neighbors

for each node recursively, GNN is competent to discover subtle and

hidden signals over graphs, and categorize some ambiguous cases.

Despite achieving remarkable success on fraud detection tasks,

GNN-based models for fraud detection yet suffer from the imbal-

anced label distribution problem, i.e. the fraudsters are far less than

benign users [20]. The label imbalance problem is fairly ordinary

to be observed in most fraud-related scenarios. For example, in the

real-world dataset, Amazon [25], only 9.5% of accounts post spam

reviews. Another example, the dataset in [50] contains only 0.5%

financial defaulter who failed to repay the debt on time.

Under such an adverse condition, models are prone to overfit-

ting in one class as a consequence of skewed data distribution [13].

Hence some works attempt to alleviate the impacts of imbalanced

label distribution from the perspective of embellishing training pro-

cedures. To name some, re-sampling methods construct a balanced

training set by oversampling theminority [41, 44] or undersampling
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the majority [23, 30]. Re-weighting methods weigh each training

case in a meta-learning [31, 51] or cost-sensitive way [14, 21].

In this paper, unlike existing works, we attempt to resolve the

label imbalance problem by maximizing the AUC (Area Under

ROC Curve) metric. Since AUC is unbiased with label distribu-

tion [24], AUC-oriented training tends to obtain a model with the

competitive ability for classifying both majority (benign users) and

minority (fraud users) samples. Though there are pioneer works de-

signed for Euclidean space data [9, 28, 42, 43], specific solutions for

non-Euclidean graph structure data are still under-explored [34].

However, maximizing AUC on GNN for fraud detection tasks

is intractable due to the potential polluted topological structure

caused by intentional noisy edges generated by fraudsters. Recall

that a central node collects feature vectors from all its neighbor

nodes during the message passing in GNN models. As a result,

some fraudsters may intentionally form noisy edges, e.g. connect

with the benign users as much as possible, to mislead the classifier

returning incorrect output. For example, for each fraud node in the

Amazon [25], 80.47% of its neighbors are benign on average. Hence,

purifying the graph structure and filtering neighbor set appropri-

ately by emerging graph structure learning [4, 47] are helpful for

adapting AUC maximization to GNN-based fraud detection.

Applying graph structure learning to AUC maximization is also

unmanageable for hinders from two aspects. On the one hand,

the lack of supervised information highly increases the hardship of

training a neighbor filter with generalizability over all nodes. On the

other hand, learning to choose neighbors for each node adaptively

is of high time complexity in dense or large-scale graphs.

To address the above challenges, we propose AO-GNN, an AUC-

oriented GNN model for fraud detection, which consists of a node

classifier and an edge pruner. Then we can decouple AUC maxi-

mization on graphs into a classifier parameter searching (classifier

training) and an edge pruning policy searching (pruner training),

respectively. The former mitigates the problem of label imbalance,

and the latter policy searching is designed for graph noise removal.

The edge pruner chooses neighbor set(s) for each node particu-

larly and further advances the message passing process, which is

omitted in existing AUC maximization approaches. Specifically, we

formulate the process of edge pruning (a.k.a choosing neighbor)

for a central node as a Markov Decision Process (MDP). Conducted

by Policy Gradient [36], our policy is capable of boosting AUC.

Importing reinforcement learning into our framework is natural

and plausible, for not only does reinforcement learning require no

noise-related supervised data, but also keeps a consistent optimiz-

ing target if we set AUC variation as the reward. Furthermore, we

devise surrogate reward, parameter sharing mechanism and halting

mechanism to decrease time consumption, which accelerates the

training by two orders of magnitude.

The contribution of this paper could be summarized as follows:

• We propose a novel GNN-based model for fraud detection

from the standpoint of AUC maximization to resolve the

problem of imbalanced label distribution and noisy topologi-

cal structure. To the best of our knowledge, this is the first

work to maximize AUC on graph data.

• We formulate neighbors choosing problem as an MDP with

a theoretical guarantee of maximizing AUC and solve it by

Deep Reinforcement Learning. Enhanced by our accelerating

mechanisms, our edge pruning policy searching module is

effective and efficient.

• Experiments on three public datasets demonstrate that AO-
GNN clearly outperforms the state-of-the-art baselines that

we are aware of.

2 PRELIMINARIES
2.1 Problem statement
2.1.1 Multi-relational imbalanced graph. Let G = (V, E,X,Y) be
an undirected graph. Specifically, vector setV consists of n nodes

vi ∈ V; E = {E1, E2, ...,Er } is a set of edge sets from r distinct

relations; X is a matrix of node feature, in which the matching

row vector Xv is the corresponding feature vector of v; Y is the

label set in which yv ∈ {0, 1} is the label of v. In the context of

fraud detection, yv = 1 represents fraud, otherwise v is a benign.

Informally, if samples from one class appear much more frequently

than another, then we call G as a multi-relational imbalanced graph.

2.1.2 AUC. Let MG : V → R be a GNN-based model over

multi-relational imbalanced graph G. Parameterized by ω ∈ Rd ,
MG(ω; v) returns the probability that v is a fraud by processing

and aggregating information from v’s neighbor set N (v). As a re-
sult of message passing scheme in GNN, trimming on N (v) would
influence the prediction output ofMG . Therefore, given a prun-

ing policy Π : 2
V → 2

V
which returning trimmed neighbor set

Π(N (v)) ⊆ N (v), we can have a new predictionMG(ω; v|Π).
Then we can calculate the AUC metric ofMG under pruning

policy Π according to the definition of AUC on a population level:

AUC(Mω
G
|Π) = P(MG(ω ; v |Π) ≥ MG(ω ; v′ |Π) |yv = 1, yv′ = 0). (1)

In Eq (1), v, v′ are drawn from all positive/negative labeled samples

independently. Eq (1) explains AUC as the probability that a random

fraud case is more likely to be classified as a fraudster than a random

benign case. The pairwise focus on benign users and fraudsters is

helpful to explain the label distribution non-bias feature of AUC.

2.1.3 Problem formulation. Given a multi-relational imbalanced

graph G and a GNN-based modelMG with random parameters,

the AUC maximization problem is to find optimal parametersω∗

forMG and optimal Π∗ simultaneously by solving

max

ω,Π
Ev,v′ (I(MG(ω ; v |Π) ≥ MG(ω ; v′ |Π)) |yv = 1, yv′ = 0), (2)

where I is indicator function and v, v′ are drawn fromV indepen-

dently. Note that Formula (2) only transforms the right side of Eq (1)

from probability to expectation for easier obtaining estimation.

2.2 Graph Neural Network
The core component of GNN is the message passing scheme, which

aggregates and transforms the representation vectors of neighbors

for each node recursively. Formally, let H(l )v be the representation

of v in the l-th layer of GNN, then we can update the representation

in the (l + 1)-th layer as

H(l+1)v = σ (W (l ) AGGR
u ∈N (v)

(MSG(H(l )v ;H(l )u ))), (3)
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where H(0)vi = Xi ; σ is an activating function;W (l ) is the trainable
parameter in the l-th layer; AGGR denotes aggregator function

and MSG denotes the message passing function [45]. Following

the ground work in Eq (3), many GNN architectures have been

put forward, among which the most representative are GCN[12],

GraphSAGE [10] and GAT[37], etc. In this paper, we choose Graph-

SAGE with relation-aware concatenation as our base architecture

for the purpose of inductive learning and efficiency. The updating

procedure can be written as

H(l+1)v,k =
1

|Nk (v)|

∑
u ∈Nk (v)

H(l )u , (4)

H(l+1)v = σ (W (l )(H(l )v ⊕ H(l+1)v,1 ⊕ · · · ⊕ H(l+1)v,r )). (5)

In Eq (4) and Eq (5), neighbor set N (v) is divided into r neighbor set
N1(v),N2(v), ...,Nr (v) according to different relations in the edge

set E of G, and ⊕ stands for vector concatenation.

2.3 Reinforcement Learning
2.3.1 Markov Decision Process. An RL task could be regarded as

a Markov Decision Process (MDP) and solved by maximizing the

expected reward [35]. An MDP P can be described as a quadruple

(S,A,P,R). Precisely, S is the state set; A is the action set; P is

a function returning the probability of transiting to s ′ given s,a,
denoted as P(s ′ |s,a); R : S×A×S → R is reward function, which

delivers reward r after the transition s → s ′ finished. In an MDP,

we make a decision to take an action a at current state s , and transit
to a new state s ′, recursively.

An agent for solving MDP could be represented as a policy

π : S → A. In state s , π (a |s) returns the probability of choosing a
as action. Given a policy π , we are able to evaluate the goodness of

a state or action by predicting returnGt from timestep t , defined as∑∞
k=0 γ

krt+k+1 where γ ∈ (0, 1] is the discount factor. The discount
factor weighs the future reward and instant reward. To be specific,

the goodness of s , a under policy π is calculated by state-value func-

tion Vπ (s) = Eπ (Gt |St = s) and Qπ (s,a) = Eπ (Gt |St = s,At = a).
The goal of reinforcement learning is to discover an optimal policy

π∗ by solving:

argmax

π

∑
s ∈S

dπ (s)Vπ (s) , (6)

where dπ (s) is the stationary distribution of s given a policy π .

2.3.2 Policy Gradient. Considering the MDP we are about to con-

struct, where S is infinite and A only contains deleting or not

deleting a neighbor, we can build a policy network πθ parameter-

ized by θ to model a policy, which takes representation vector of s
as input and output πθ (a |s) for each possible a. Instead of backward
gradient from a loss function, gradient for policy network is dif-

ferentiated from Formula (6), which is the goal of RL. The detailed

gradient expression is given by Policy Gradient [36]:

∇θ = E(Q
π (s,a)∇ lnπθ (a |s)). (7)

To performEq (7), we could produce trajectories, shaped like "S0,A0, S1,
R1,A1, S2,R2,A2, ..., Sn ,Rn ", by sampling action from πθ (At |St ) re-
cursively given an initial state S0.

3 METHODOLOGY
In this section, we first introduce the framework of AO-GNN, which
decouples AUC maximization on GNN into classifier parameter

searching and edge pruning policy searching. Thenwe providemore

detailed descriptions of both modules and our efforts on efficiency.

3.1 Framework of Model
Recall the AUC maximization problem formulated in Formula (2).

Actuallyω can determine a unique node classifier GNN (hereafter

called classifier) and Π represents an edge pruner (hereafter called

pruner). Therefore, the AUC maximization problem is searching a

classifier and a pruner to achieve the goal proposed in Formula (2).

However, it is rather difficult to optimize both ω and Π at once,

because training them needs distinct materials. As the classifier

should be trained with nodes in graph and their labels; while the

edge pruner should be trained with trajectories we simulated. As

Algorithm 1: AUC maximization with GNN

input :A multi-relation graph G, a GNN architectureMG

1 InitializeMG ←M
ω
G
with random parameters;

2 Initialize Π as a random function;

3 while Break Condition is False do
4 ω ← argmaxω AUC(Mω

G
|Π); // Parameter searching

5 Π ← argmaxΠ AUC(Mω
G
|Π); // Policy searching

6 end
return :A GNNMω

G
, Pruning policy Π

shown in Alg. 1, to solve this problem, we decide to train the classi-

fier and pruner asynchronized by decoupled optimization, which

transforms the original problem into two subproblems (Line 4,5

of Alg. 1). In Line 3 of Alg. 1, the break condition could be set by

either a certain number of iterative rounds or a threshold of AUC

variation indicating convergence.

As a greedy algorithm, our framework is able to maintain a

monotonous growth on AUC because we fix one part of AO-GNN
when optimizing another part. To avoid falling into local optima,

we make efforts for both modules, which will be further explained.

In the following subsections, we will show that this training

schema is synergistic: classifier provides a preciser reward for

pruner training and pruner provides cleaner topological structure

as the training material for the classifier.

3.2 Classifier Parameter Searching
In this subsection, we aim at solving Line 4 in Alg. 1, i.e. argmaxω
AUC(Mω

G
|Π) via searchingω, which represents parameters of the

classifier. The architecture of our classifier is illustrated in the left

part of Fig. 1. Assume we use existing edge pruning policy Π to

prune central node v’s neighbor sets N1(v), ...,Nr (v) for r diverse
relations. Thenwe use pruned neighbor setsΠ(N1(v)), ...,Π(Nr (v))
to generate layer-wise hidden embeddingsH(·)v recursively by Eq (4).

After inputting hidden embedding of last layerH(l )v into an MLP, we

can access the predictive result and loss function LAUC specified

by us.

1313



WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Mengda Huang, Yang Liu, Xiang Ao, Kuan Li, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He

∇𝜔𝜔

Classifier Parameter Searching

STEP①：
Prune 
graph 
structure

𝓛𝓛𝑨𝑨𝑨𝑨𝑨𝑨

Classifier
GNN 
ℳ𝒢𝒢′

𝜔𝜔

Edge 
Pruner 
𝚷𝚷

STEP②：
Train GNN
with purified 
structure

Input Predict

𝐺𝐺

𝐺𝐺𝑝𝑝

𝐺𝐺𝑝𝑝

State 𝑠𝑠
𝒢𝒢′𝑎𝑎 = 1

𝑎𝑎 = 0

𝑟𝑟 = 𝐴𝐴𝐴𝐴𝐴𝐴 ℳ𝐺𝐺′
𝜔𝜔 − 𝐴𝐴𝐴𝐴𝐴𝐴 ℳ𝐺𝐺

𝜔𝜔

𝑟𝑟 = 0

Edge Pruning Policy Searching

𝒢𝒢

𝒢𝒢

?

𝐇𝐇𝐯𝐯,i
Φv𝑐𝑐

Pruned
Neighbors

Embeddings

Environment
GNN
ℳ𝒢𝒢

𝜃𝜃

Relation-aware
Policy

Networks
𝝅𝝅𝑖𝑖
𝜃𝜃𝒊𝒊

State 
embedding

𝐄𝐄𝑆𝑆

Edge 
Pruner 
𝚷𝚷

State 𝑠𝑠𝑠

∇𝜃𝜃
Policy

Gradient

Classifier
GNN
ℳ𝒢𝒢′

𝜔𝜔

Surrogate
reward

Classifier
GNN
ℳ𝒢𝒢

𝜔𝜔

Predict
Result

ℳ𝜔𝜔

𝚷𝚷

Sample

Figure 1: Model training schematic of AO-GNN. Dashed lines denote pruned edges.

The core of traditional parameter searching is optimizing a

loss function following the philosophy of empirical risk minimiza-

tion (ERM). To maximize a metric in parameter searching, the most

straightforward idea is designing a loss function derived from the

unbiased estimation of the metric to be optimized. For instance,

cross-entropy loss is designed to minimize Kullback–Leibler diver-

gence; Dice loss [26] is evolved from the unbiased estimation of

F1-score to maximize F1-score directly. Similarly, we can devise a

loss function to maximize AUC based on Formula (2). As the indica-

tor function in Formula (2) is not consistent [46], we can replace it

as l2 convex surrogates. We eliminate l1 loss for its statistically in-

consistency with AUC [9]. Then optimizing problem can be written

as a loss function by minimization:

min

ω∈Rd
Ev,v′ [(1−(MG(ω ; v |Π)−MG(ω ; v′ |Π))2 |yv=1, yv′ =0]. (8)

However, Formula (8) requires coupled samples with different

labels as input which is not convenient to manufacture mini-batch

gradient. To make the optimization batch-friendly so that it is ap-

plicable to graph with large scale, we deconstruct and convert it

into a saddle point optimization problem [2].

Theorem 1. The optimizing problem in Formula (8) is equivalent
to

min

ω ∈Rd , {a,b }∈R2
max

α ∈R
Ev[LAUC (ω,a,b,α , v|Π |p)], (9)

where p is the ratio of fraud nodes, and

LAUC (ω,a,b,α , v|Π,p) = I(y = 1)[(1 − p)(MG(ω; v|Π) − a)2

+ 2(p − 1)(1 + α)MG(ω; v|Π)]

+ I(y = 0)[p(MG(ω; v|Π) − b)2

+ 2p(1 + α)MG(ω; v|Π)] + p(1 − p)α2.

Remark. This theorem is similar to Theorem 1 in [46], and we
present an understandable proof and the reason why we import learn-
able aid parameters a,b,α in the appendix.

For simplicity, we define m = [ω,a,b] ∈ Rd+2. Intuitively, m
is updated by stochastic gradient descend, while α is updated by

Algorithm 2: Solving argmaxω AUC(Mω
G
|Π)

input :A multi-relation graph G, train setVt , validation setVv
drawn from node set V of G, learning rate η0, number of

inner iteration T0, a GNN architectureMG , an edge

pruning policy Π
1 Initializem0 ∈ R

d+2
randomly with constraint | |m | |2 < ϵ , α 0 ← 0;

2 for k = 1, . . . , K do
3 mk

0
← mk−1, αk0 ← αk−1, ηk ← 3

1−kη0, Tk = 3
k−1T0;

4 for t = 1, ..., Tk do
5 Draw a batch of nodes {v1, v2, ..., vb } from Vt ;
6 Prune for each vi ’s neighbor in each relation

N1(vi ) ← Π(N1(vi )), ..., Nr (vi ) ← Π(Nr (vi ));

7 CalculateMG(ω
k
t−1; vi |Π) for each vi ;

8 Calculate LAUC (ω, a, b, α, v |Π, p) in this batch by (9);

9 mk
t ← mk

t−1 − ηk [∇mLAUC + λ(mk
t−1 −m

k
0
)];

10 αkt ← αkt−1 − ηk [
∂LAUC

∂α + λ(αkt−1 − α
k
0
)];

11 end
12 mk ←

1

Tk

∑Tk
i=1 m

k
i ; // ωk is part of mk

13 αk ←
∑
v∈Vv MG (ωk ;v|Π)I(y=1)∑

v∈Vv I(y=1)
−

∑
v∈Vv MG (ωk ;v|Π)I(y=0)∑

v∈Vv I(y=0)
;

14 end
return :GNNMωK

G

stochastic gradient ascend. Unlike traditional loss function only calling
for minimization, optimization problem described in Formula (9) is
allocated as a saddle point optimization problem, which is well-studied
by academia. Therefore, as shown in Alg. 2, we employ proximal
primal-dual stochastic gradient (PPD-SG) [18] to solve Formula (9)
which achieves the best time complexity at present.

In Alg. 2, K ,T0,η0, ϵ, λ are hyper-parameters. The effectiveness

and converging property of Alg. 2 can be proved by Theorem 2

in [18], which is omitted in this paper as it is out of the scope of

this paper. In Line 12 and 13, m and α jump from the current value

to the geometric center of the last Tk traces, which prevents falling

into local optima.
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3.3 Edge Pruning Policy Searching
In this subsection, we focus on solving Line 5 in Alg. 1, i.e. argmaxΠ
AUC(Mω

G
|Π) via training a pruner that is competent to purify

graph topology and further boost AUC. We first demonstrate how

we model edge pruning as an MDP, then prove the consistency

between solving this MDP and maximizing AUC mathematically,

and finally we introduce the architecture of our pruner and how

we train it by policy gradient.

3.3.1 Edge pruning MDP. As aforementioned, Π : 2
V → 2

V

returns the pruned neighbor set for each node v. Searching for

an optimized Π is not trivial due to the discreteness of Π and the

intricacy in 2
V

space. Considering this challenge, we split the

whole pruning process conducted by Π into separate prune-or-

not decision making processes controlled by π , which return a

deleting probability for each neighbor. In other words, we obtain

each pruned neighbor sets Π(N()(v)) by deleting neighbors one

by one instead of screening all at once. Then the whole deleting

process can be formulated as an MDP as follows.

• State spaceS: The state s inS determined by the center node

vc , the prune-to-be neighbor node vp and the relation-aware

pruned neighbor sets Φvc = {ϕ
vc
1
,ϕvc

2
, ...,ϕvcr }, denoted as

a triplet (vc , vp ,Φvc ).
• Action space A: A = {0, 1}. In state s = (vc , vp ,Φvc ), a = 1

represents deleting vp from its relation neighbor set N(·)(vc )
and a = 0 represents keeping vp as a neighbor.

• State transition probability space P: Next state is determined

in our problem, thus P is a constant for each a in state s .
• Reward function R: The reward of a transition, s,a → s ′,
is the variation of AUC, i.e. AUC(Mω

G′
|Π) −AUC(Mω

G
|Π),

aroused by the action a. The new AUC is calculated by exist-

ing GNN modelMG . Obviously, when a = 0, R(s,a, s ′) = 0.

Concretely, in a single decision making action, we randomly se-

lect a neighbor vp from one of the centre nodes vc ’s relation-aware
neighbor set N(·)(vc ), then we delete it from neighbor set with prob-

ability of π (a = 1|s = (vc , vp ,Φvc )). If we do prune vp , it would be

added into the corresponding ϕvc
(·)
. By executing single pruning ac-

tion recursively on non-repeatable neighbor node, we can generate

a series of new relation-aware neighbor setsΠ(N(·)(vc )) ⊆ N(·)(vc ).
In this case, we can reproduce the edge pruning policy Π by a

policy π for MDP we formulated. In view of we have r specific

relations in G, we can further appoint r isolated policies π1, ...,π r
to generate deleting probability for edges in each relation. After

traversing each neighbor by corresponding relation-aware policy

π (·) to inquire pruning or not, we can determine all relation neigh-

bor sets of the central nodes. Formally, as the i-th relation neighbor

set of vc , Ππ 1, ...,π r (Ni (vc )) could be determined by π i .

After explaining how π1, ...,π r define a Π, we must present the

equivalence between solving above MDP and AUC-oriented edge

pruning policy searching:

argmax

π 1, ...,π r

∑
s ∈S

dπ (s)Vπ (s = (vc , vp ,Φvc ))

= argmax

π 1, ...,π r

AUC(Mω
G
|Ππ 1, ...,π r ).

(10)

Theorem 2. Under the MDP we constructed above, Eq (10) holds
when the discount factor γ = 1.

Remark. We provide a proof to Theorem 2 in appendix. In Eq (10),
the left part is derived from Eq (6), where π is chosen according to re-
lation between vc and vp . Theorem 2 indicates that policies π1, ...,π r
which maximize the expectation of reward in aforementioned MDP
also maximize AUC.

3.3.2 Architecture and training of the pruner. To solve this MDP, we

design a pruner consists of multiple relation-aware policy networks

illustrated in the lower right part of Fig. 1. In the pruner, the decision

making is a two-stage process: 1) generate state embedding of

s , i.e. Es = (vc , vp ,Φvc ); 2) calculate the probability of deleting

vp , i.e. π (·)(a = 1|s). In first stage, we use an environment GNN

Mθ
G
to create embeddings of states, motivated by [27] which use

CNNs to model the state space. Based on the assumption that some

pruned neighbors are similar, we add the original feature, Xvp , and

embeddings of pruned neighbors, HΦvc
v,1 ⊕ · · · ⊕ HΦvc

v,r , to help to

describe the state:

HΦvc
v,i =

1

|ϕvci |

∑
u ∈ |ϕvc

i |

Xu , (11)

Es = Xvp ⊕ H(l )vc ⊕ H(l )vp ⊕ HΦvc
v,1 ⊕ · · · ⊕ HΦvc

v,r . (12)

In Eq (12), ⊕ means concatenation, and H(l )vc ,H
(l )
vp are calculated by

Eq (4) and Eq (5) without pruning. Then we input Es to matching

π i according to the category of edge connecting vc and vp :

π i (a = 1|s) = Sigmoid(MLP(Es )). (13)

Because A = {0, 1}, π i (a = 0|s) = 1 − π i (a = 1|s). And the MLP

in each πi is parameterized by θi .
In the training phase, we apply a classic policy gradient, REIN-

FORCE [36] with simulated trajectories. We train all policy net-

works simultaneously by ascending gradients generated from Eq (7).

For each edge pruning policy searching round, we train all policy

networks starting from random parameters, which avoids being

trapped in local optima.

3.4 Accelerating Edge Pruning Searching
Parameter sharing. As demonstrated in Fig. 1, each policy net-

work has its own parameters while sharing the same environment

GNN, i.e.Mθ
G
. As our state embedding collects almost all possible

information, it is acceptable for all policy networks to share a GNN.

Also, parameter sharing significantly reduces space complexity.

Halting mechanism. We restrict the maximum number of delet-

ing in a single relation-aware neighbor set to limit length of trajec-

tories. When enough neighbors are pruned, the mechanism would

be triggered and stop the pruning process, thus a higher halting pa-

rameter usually leads to longer trajectories. Considering that noisy

edges may not account for the majority in the neighborhood of

each node, the lack of halting mechanism or a high halting parame-

ter would bring sparse reward issue [1] to the RL training. Short

trajectories not only save time in producing training material but

also leverage the trajectories length, which prevents the pruning

policy from overfitting on nodes with large degrees.
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Surrogate reward. As other metric-oriented RLs, we regard met-

ric variation caused by action as rewards. Since our optimization is

maximizing AUC on the training set, we only examine AUC varia-

tion on the training set. When an edge is cut, the graph structure

is distinct. Then AUC variation is AUC(Mω
G′
|Π) − AUC(Mω

G
|Π),

in which AUC() is defined in Eq (2). Influenced by the expecta-

tion for coupled nodes, to figure out this value need O(n logn)
time (n is the number of nodes in training set). Note that only one

node’s neighborhood is changed in one pruning action, we can

simplify the AUC variation into a surrogate loss with computing

complexity ofO(n). Say we have predictive fraudster probability set
{Pv |v ∈ VT raininдSet } for each node v in training set. For a node

vc , if we cut one of its neighbor, then its predictive result evolve

from pvc to p′vc . The surrogate reward of this action is:

R(s, a, s′) = F (yvc )·

{
| {pv |pv ∈ (pvc , p

′
vc ], yv , yvc } |, p′vc ≥ pvc

− | {pv |pv ∈ [p′vc , pvc ), yv , yvc } |, p′vc < pvc
.

(14)

Where F (x) is a sign function, defined as F (1) = 1, F (0) = −1.

Theorem 3. Eq (14) is strictly proportional to AUC variation, i.e.
AUC(Mω

G′
|Π) −AUC(Mω

G
|Π), and computing it takes O(n) time.

Remark. We provide a proof for Theorem 3 in the appendix. This
theorem implies that this surrogate reward can accelerate reward
returning since it reduces the complexity fromO(nloдn) toO(n), which
is the main source of the pruner’s training time.

4 EXPERIMENTS
In this section, we implement AO-GNN on three public fraud detec-

tion datasets, with the intention to answer the following research

questions:

• RQ1 Does AO-GNN outperform state-of-the-art GNN-based

fraud detection models?

• RQ2 How significant are the classifier parameter searching

and the edge pruning policy searching in boosting AUC?

• RQ3 How does AUC evolve under the AUC-oriented param-

eter searching?

• RQ4What kind of edges are more likely to be pruned?

• RQ5 How effective are RL accelerating mechanisms?

4.1 Experimental Setup
4.1.1 Datasets. In experiment sessions, we use three public bench-

mark datasets in fraud detection, YelpChi [7], Amazon [25] and

Books [32]. The statistics of datasets are listed in Table 1, and the

practical significance of our datasets is explained in Appendix B.

Table 1: Statistics of datasets.

Dataset #Node #Edge Relations Relation#Edges

45,954; R-U-R 49,315

YelpChi

14.5%

3,846,979

R-T-R 573,616

Fraud R-S-R 3,402,743

11,944; U-P-U 165,608

Amazon

9.5%

4,398,392

U-S-U 3,566,479

Fraud U-V-U 1,036,737

Books 1,418; 1.9% 3,695 Co-purchase 3,695

Our datasets vary in many dimensions. In terms of fraud ratio,

YelpChi is relatively mild (14.5%) whereas Books is extremely imbal-

ance (1.9%). For the average degree, we have both dense (Amazon,
368.25) and sparse graphs (Books, 2.61). Besides, we have both sin-

gle relation (Books) and multi-relation graphs (YelpChi, Amazon).
The difference among datasets could assist us to illustrate the well

generalizability of AO-GNN in real-life applications.

4.1.2 Baselines. Besides regular GNNmodels (i.e. GCN [12], Graph-

SAGE [10] and GAT [37]), we also compare AO-GNN with several

SOTA GNN-based fraud detection models to examine the effective-

ness on fraud detection tasks. Among baselines, DR-GCN [34] is

designed for imbalanced graph data, and GraphConsis [22], CARE-
GNN [7], PC-GNN [20] are designed for fraud detection on graphs.

Aside from our AO-GNN, we also stage three variants of our

model to analyze the performance of each module:

• AO-GNNwoP : removing the edge pruning policy searching

module from original AO-GNN ;

• AO-GNNCE : switching the AUC-oriented parameter search-

ing to Cross-Entropy-oriented searching from original AO-
GNN ;

• AO-GNNRP : switching ourwell-trained edge pruning policy

into a random pruning policy;

4.1.3 Experimental Settings. For all baselines and AO-GNN related

models, we make a 10-run experiment to evaluate them by mean

and standard deviation. The training, validation and testing set

ratios are 40%, 20%, 40% with consistent fraud ratios, respectively.

We set hyper-parameters in AO-GNN as: (1) framework (Alg. 1):

we perform 3 iterations and break; (2) classifier parameter search-

ing (Alg.2): K =3,T0= 600,η0=0.2, ϵ =1e−3,b=128, λ=5e−4; (3)
edge pruning policy searching: learning rate is 0.01, and we collect

20 trajectories for each node in the training set. For each relation-

aware neighbor set, we prune 10 or a half of the total members at

most to trigger the halting mechanism.

For reproducibility, we present more details about implementa-

tion of AO-GNN in Appendix C.

4.1.4 Metrics. As the focus point of AO-GNN, AUC is one of our

metrics in experiments. To prove that our model not only out-

performs on AUC, we also use other two common metrics. One

of them is the F1-macro, which is the unweighted mean of the

F1-score of each class. And the other one, GMean, is defined as√
T P

T P+FN ·
T N

TN+F P . It is necessary to mention that we do not adopt

accuracy, precision, recall as measures to weigh the quality of mod-

els, since they are not applicable to imbalanced datasets.

For original GCN, GraphSAGE, CARE-GNN and DR-GCN that

are suffering from label imbalance, we adjust the threshold of clas-

sification by threshold moving [6].

4.2 Performance Comparison (RQ1)
We evaluate all baselines mentioned before to answer RQ1. From

the experimental results of AUC, F1-macro and GMean shown in

Table 2, we have the following three observations:

First, our method outperforms not only in AUC but also in F1-

macro and GMean. Meaningful increases on F1-macro and GMean
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Table 2: Performance comparison for baselines, AO-GNN and its variants

Method

Dataset YelpChi Amazon Books

Metric AUC F1-macro GMean AUC F1-macro GMean AUC F1-macro GMean

Baselines

GCN 0.5983±0.0049 0.5620±0.0067 0.4365±0.0262 0.8369±0.0125 0.6408±0.0694 0.5718±0.1951 0.4538±0.1977 0.2374±0.2065 0.0000±0.0000

GAT 0.5715±0.0029 0.4879±0.0230 0.1659±0.0789 0.8102±0.0179 0.6464±0.0387 0.6675±0.1345 0.4006±0.2023 0.2058±0.1623 0.0000±0.0000

GraphSAGE 0.5439±0.0025 0.4405±0.1066 0.2589±0.1864 0.7589±0.0046 0.6416±0.0079 0.5949±0.0349 0.4761±0.1508 0.2464±0.2004 0.0000±0.0000

DR-GCN 0.5921±0.0195 0.5523±0.0231 0.4038±0.0742 0.8295±0.0079 0.6488±0.0364 0.7963±0.0091 0.5131±0.1579 0.3048±0.2454 0.0000±0.0000

GraphConsis 0.6983±0.0302 0.5870±0.0200 0.5857±0.0385 0.8741±0.0334 0.7512±0.0325 0.7677±0.0486 0.5647±0.1281 0.2912±0.1325 0.0000±0.0000

CARE-GNN 0.7619±0.0292 0.6332±0.0094 0.6791±0.0359 0.9067±0.0112 0.8990±0.0073 0.8962±0.0018 0.6267±0.0462 0.4050±0.0996 0.4861±0.0811

PC-GNN 0.8178±0.0014 0.6400±0.0230 0.7395±0.0130 0.9586±0.0014 0.8956±0.0077 0.9030±0.0044 0.6431±0.0189 0.4951±0.0037 0.5244±0.1012

Ablation

AO-GNNwoP 0.8680±0.0020 0.7182±0.0177 0.7484±0.0125 0.9588±0.0008 0.8956±0.0026 0.8740±0.0137 0.6720±0.0111 0.4131±0.0102 0.4829±0.0519

AO-GNNwoC 0.8545±0.0177 0.7063±0.0129 0.7305±0.0241 0.9392±0.0166 0.8914±0.0041 0.8828±0.0267 0.5821±0.1397 0.2901±0.2102 0.3711±0.1919

AO-GNNR−P 0.8302±0.0286 0.6936±0.0351 0.7192±0.0586 0.9197±0.0238 0.8827±0.0135 0.8602±0.0164 0.5604±0.1733 0.2845±0.2329 0.3068±0.1240

Ours AO-GNN 0.8805±0.0008 0.7042±0.0051 0.8134±0.0232 0.9640±0.0020 0.8921±0.0045 0.9096±0.0105 0.7174±0.0158 0.5503±0.0141 0.6127±0.0252

Figure 2: AUC evolving process

in 2 out of 3 datasets indicate that our method is practical and AUC-

oriented training does empower the model comparable capability of

classifying both classes. We argue that relatively low improvements

in Amazon are because the performance of PC-GNN is high and

the increasing room is limited. What’s more, the feature of low AUC

standard deviation suggests that AO-GNN is stable and reliable.

Second, the combination of AUC-oriented parameter and policy

searching is the key to solving label imbalance and noisy edges prob-

lems. Compared to classic GNNmodels (i.e. GCN,GAT,GraphSAGE)),

our model is far superior in fraud detection tasks. This result is

reasonable because these models have no special design for such

tasks. The fact that PC-GNN performs much better than classic

GNNs proved the necessity of sampling neighbors from the side.

Similarly, the improvement of GraphConsis shows that noise in

the graph is also a negative factor for fraud detection. CARE-GNN

also proposed an RL neighborhood sampling for camouflage issue,

but value-based sampling sacrifices effectiveness for efficiency. Un-

like the above methods, AO-GNN considers both challenges and

solves them in a consistent framework, which ensures monotonic

improvement on AUCmathematically offsets the negative influence

of noise and label imbalance practically.

Third,AO-GNN is valid in extremely imbalanced datasets. Among

the previous baselines, only CARE-GNN and PC-GNN can study

and achieve relatively stable scores in Books. We found that other

baselines failed to identify any fraudsters and tend to classify all

nodes as benign with utmost probabilities (i.e. Gmean=0). However,

AO-GNN holds a preferable performance in Books as similar as in

the other two datasets but with a slightly higher standard deviation.

In general, AO-GNN improves AUC and GMean, which are met-

rics unbiased to label distributions[24], on 3 datasets compared to

all baselines. Therefore, AO-GNN is competent to alleviate the node

label imbalance problem.

Figure 3: The relation category distribution of pruned edges

4.3 Ablation Study (RQ2)
We conduct three kinds of ablation tests to evaluate how each

module contributes to the final result. Two of them are obtained

by switching the edge pruning policy to a random policy, while

another one is generated by deleting one of the modules. Based on

the data in Table 2, we have the following observations:

First, topology optimizing in AO-GNN does promote AUC per-

formance compared to optimizing via only parameters. Aside of

display metrics, we also make t-test on AUC metric between AO-
GNNwoP and AO-GNN, whose p-value ≪ 0.01. Thus, the break-

through of AO-GNN indicates the superiority of the comprehensive

optimization via both parameter and topology.

Second, by comparing AO-GNNRP and AO-GNNwoP , we can

observe that randompruning is harmful to the AUC-oriented param-

eter searching, which further proves the rationality and necessity

of our pruning policy.

Third, by comparing AO-GNNwoP and AO-GNNCE , we can find

that model with only classifier parameter searching module has a

better performance. We speculate it is the result of difference in RL

reward quality. As our RL process needs an AUC-oriented GNN to

return reward, GNN trained by cross entropy would influence the

training effect of the edge pruning.

At last, we can notice that the F1-macro gets lower when the

pruning policy is added. We speculate that the reason is the AUC-

oriented training would push the predictive results away from the

classification border in both directions, which may induce F1-macro

compensation in late optimization process.

4.4 AUC Evolving Process Study (RQ3)
To answer RQ3, we display how AUC evolves in all datasets per

100 iterations in Fig. 2. The AUCs are recorded on the validation set

and we randomly choose one of the records to present without loss
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Figure 4: Efficiency and effectiveness statistics. The bar
charts in (a) is used to demonstrate the improvement of the
halting mechanism, and the line charts in both (a)&(b) show
the savings in time cost brought by the surrogate reward.

of generality. Recall that we setTk =3
k−1T0,T0=600, K =3, thus the

parameters of the classifier would jump to the center of past traces

in the 600th, 2400th iterations. We can observe two apparent falls

in the 6-th and the 24-th point as described in Alg. 2’s Line 12-13.

According to the Fig. 2, there are two decreases that happen when

the increasing extent is gradually disappearing. After each falling,

the AUC curves gain a longer-lasting growth and higher upper

bound, which indicates that this trace jump mechanism avoids

local optima.

4.5 Pruned Edges Study (RQ4)
To answer RQ4, we listed edge pruning-related statistics when

applying our well-trained policy. We only present results on YelpChi
and Amazon because multi-relation is easier to explain the pruning

tendency. In the test sets of both datasets, we pruned 122,147 (12,527)

edges out of 608,415 (54,618) edges we traversed in YelpChi (Amazon,
respectively). Among those pruned edges, we classify them by

relations as demonstrated in Fig.3.

From the histogram, we can discover that in YelpChi R-U-R
edges are hardly pruned. Actually, only one R-U-R edge is pruned

accidentally in practice. According to the connotation in Appen-

dix B, the reviews connected by R-U-R are posted by the identical

user and have the same label. This fact entails that our pruning

policy is effective to learn a reasonable pruning tendency among

relations even without prior knowledge. In Amazon, U-P-U edges

account for 42.15% in the pruned edge with 3.77% frequency in total.

This fact suggests that U-P-U edges are very noisy, because having

a common review on the same product is effortless to realize.

4.6 RL Accelerating Mechanism Study (RQ5)
To answer RQ5, we compare the time consumption betweenwhether

using surrogate reward (Line charts in Fig. 4 (a) and (b)) and probe

how the halting mechanism influences RL training efficiency (Bar

charts in Fig. 4 (a)). We only test on two relatively large-scale graphs.

First, the halting mechanism is helpful in both efficiency and

effectiveness. As demonstrated in Fig. 4 (a), 10 is the best max

pruning number with the highest AUC increase (highest bars in

both datasets) and relatively low time consumption (low position

in lines of both datasets). Note that time consumption is not linear

to max prune number. From the trajectory records, we find the

reason is that the pruning policy seldom takes action after pruning

enough edges, which leads to lengthy trajectories. And the negative

impact when the max pruning number is 20 confirms that the issue

of sparse reward is harmful to the effectiveness of the model.

Second, the surrogate reward reduces the time cost. Compar-

ing Fig. 4 (a) and (b), when switching the surrogate loss to naive

AUC variation, the average time for simulating one trajectory on

YelpChi (Amazon) is 56 (30) times that of surrogate loss when max

pruning number = 10. The facts above testify that our RL accelerat-

ing mechanism is effective and efficient.

5 RELATEDWORK
Imbalanced Learning. The core idea of alleviating impacts of

imbalanced label distribution is embellishing training sessions. In

general, all imbalance learning methods could be divided into re-

sampling approaches and re-weighting approaches. Re-sampling, i.e.

oversampling and undersampling, is constructing a balanced train-

ing set essentially. Oversampling is usually accomplished by gener-

ating synthesis minorities. SMOTE [3] is the first work in this orien-

tation based on interpolation. ADASYN [11] restudied this question

from the learning difficulty of diverse minority cases. Besides, [41]

generates samples with optimal transport theory. Compared to

oversampling, undersampling is more intuitive since random over-

sampling is beneficial in some cases [44]. Trainable samplers is

the mainstream in recent undersampling research, such as [23, 30].

Re-weighting can be summarized as meta-learning way [31, 51]

and cost-sensitive way, both of which attempt to assign customized

weight to different samples to leverage their influence throughout

the whole training process. For cost-sensitive methods, loss func-

tion modification [14, 26] is the prevailing idea nowadays. Similarly,

AUC maximization is also a cost-sensitive method that transforms

AUC into a batch-friendly loss function.

Stochastic AUC Maximization. Traditional AUC maximization

is unsuitable for the online setting because of its pairwise updating

nature. [49] and [8] intend to solve this dilemma from the angle of

reservoir buffer mechanism and optimal regret bound, respectively.

[46] first converts AUC to a surrogate loss in a novel saddle point

reformulation way. [19, 28] follow the framework of surrogate AUC

loss and proposed optimization algorithms in better convergence

rate and time complexity. However, all the above works need strong

convex assumptions, which is hard to satisfy in DNNs. [18] solved

this problem from proximal primal-dual optimization, which makes

stochastic AUC maximization applicable in DNNs. To the best of

our knowledge, our AO-GNN is the first work to solve the AUC

maximization process on GNN, which takes topological structure

into account in the whole optimization process.

GNN-based FraudDetection. Following the groundwork in Eq (3),
a lot of GNN architectures have been proposed. The most wide-

applied GNNs are Graph Convolution Network (GCN) [12], Graph-

SAGE [10] and Graph Attention Network(GAT) [37]. Based on clas-

sic GNN architectures, various models are invented by reconstruct-

ing graph for fraud detection tasks, such as Fdgars [39], GraphCon-

sis [22] and SemiGNN [38]. At present, GNN-based fraud detectors

models are driven by challenges, which specific devise modules

to comply with noise and label imbalance problems[5, 15, 17]. DR-

GCN [34] is a pioneer work concerning label imbalance in graphs

by implementing a dual-regularized GCN, which is composed of a

class-conditioned adversarial regularizer and a latent distribution

alignment regularizer, while it is not adaptable to graphs with large
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scale. CARE-GNN [7] regards noise in graphs as camouflage, and

enhances the aggregating process against it. PC-GNN [20] proposes

to undersample a label balanced neighborhood for label balanced

training set and achieves state-of-the-art in GNN-based fraud de-

tection. In this paper, we attempt to render both challenges under

a consistent AUC-oriented framework.

6 CONCLUSION
In this paper, we proposed AO-GNN, an AUC-oriented GNN-based

model for graph fraud detection tasks. Unlike previous work, we

attempted to alleviate label imbalance problem from the standpoint

of maximizing AUC metric, which is unbiased to label distribu-

tion. Considering the noisy nature of fraud detection graph, we

decoupled the AUC maximization process on graph into a classifier

parameter searching and an edge pruning policy searching, respec-

tively. The classifier parameter searching module is conducted by a

surrogate loss of AUC. Meanwhile, we regard edge pruning policy

searching as an MDP and optimize it with Policy Gradient. Exper-

iments on three public fraud detection datasets demonstrate the

effectiveness of AO-GNN on AUC, F1-macro, and GMean.
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Appendices
In the appendix, we present proofs for 3 theorems mentioned in

main text , and details about datasets and reproducibility.

A PROOFS
A.1 Proof for Theorem 1

Theorem 1. The optimizing problem in Formula (8) is equivalent
to

min

ω ∈Rd , {a,b }∈R2
max

α ∈R
Ev[LAUC (ω,a,b,α , v|Π |p)],

where p is the ratio of fraud nodes, and

LAUC (ω,a,b,α , v|Π,p) = I(y = 1)[(1 − p)(MG(ω; v|Π) − a)2

+ 2(p − 1)(1 + α)MG(ω; v|Π)]

+ I(y = 0)[p(MG(ω; v|Π) − b)2

+ 2p(1 + α)MG(ω; v|Π)] + p(1 − p)α2.

Proof. The Ev,v′ part to be minimized in Formula (8) can be

transformed as follows:

Ev,v′[(1 − (MG(ω; v|Π) −MG(ω; v′ |Π))2 |yv = 1,yv′ = 0]

=Ev,v′
[
1 + [MG(ω; v|Π) −MG(ω; v′ |Π)]2 − 2[MG(ω; v|Π)−

−MG(ω; v′ |Π)]|yv = 1,yv′ = 0

]
=1 + Ev[MG

2(ω; v|Π)|yv = 1] + Ev′[MG
2(ω; v′ |Π)|yv′ = 0]

− 2
[
Ev[MG(ω; v|Π)|yv = 1] − Ev′[MG(ω; v′ |Π)|yv′ = 0]

]
− 2Ev[MG(ω; v|Π)|yv = 1]Ev′[MG(ω; v′ |Π)|yv′ = 0]

=1 + {Ev[MG
2(ω; v|Π)|yv = 1] − (Ev[MG(ω; v|Π)|yv = 1])2}

A

+ {Ev[MG
2(ω; v|Π)|yv′ = 0] − (Ev′[MG(ω; v′ |Π)|yv′ = 0])2}

B

− 2
[
Ev[MG(ω; v|Π)|yv = 1] − Ev′[MG(ω; v′ |Π)|yv′ = 0]

]
+
(
Ev[MG(ω; v|Π)|yv = 1] − Ev′[MG(ω; v′ |Π)|yv′ = 0]

)
2

Note that for a random variable X , E(X 2) − [E(X )]2 = Var (x) =
E[(X − E(X ))2], and mink E[(X − k)

2] = Var (x) i.i.f k = E(X ), so:

Ev,v′[(1 − (MG(ω; v|Π) −MG(ω; v′ |Π))2 |yv = 1,yv′ = 0]

=1 + min

(a,b)∈R2

(
Ev[(MG(ω; v|Π) − a)2 |yv = 1]

A
+ Ev′[(MG(ω; v′

−b)2 |Π)|yv′ = 0]
)
B

− 2
[
Ev[MG(ω; v|Π)|yv = 1] − Ev′[MG(ω; v′ |Π)|yv′ = 0]

]
+
(
Ev[MG(ω; v|Π)|yv = 1] − Ev′[MG(ω; v′ |Π)|yv′ = 0]

)
2

C

Note that maxα ∈R(2αA − α
2) = A2

i.i.f α = A. If we denote A =[
Ev[MG(ω; v|Π)|yv = 1] − Ev′[MG (ω; v′ |Π)|yv′ = 0]

]
, then:

Ev,v′[(1 − (MG(ω; v|Π) −MG(ω; v′ |Π))2 |yv = 1,yv′ = 0]

=1 + min

(a,b)∈R2

(
Ev[(MG(ω; v|Π) − a)2 |yv = 1] + Ev′[(MG(ω; v′

− b)2 |Π)|yv′ = 0]
)
+max

α ∈R
(2αA − α2)

C
− 2A

=1 + min

(a,b)∈R2
max

α ∈R
Ev{
I(yv = 1)

p
[MG(ω; v|Π) − a]2 +

I(yv = 0)

1 − p

[MG(ω; v|Π) − b]2 + 2(1 + α)
( I(yv = 0)

1 − p
MG(ω; v|Π)−

I(yv = 1)

p
MG(ω; v|Π)

)
− α2}

=1 +
min{a,b }∈R2 maxα ∈R Ev[LAUC (ω,a,b,α , v|Π,p)]

p(1 − p)

□

By importing aid parameters a,b,α , we eliminate all square re-

lated expectation terms, which simplifies following optimization.

Be aware that the optimal α , i.e. α∗ = A, which is consistent to

Line 13 in Alg. 2 because RHS in Line 13 is the unbiased estimation

of A in the current batch.

A.2 Proof for Theorem 2
Theorem 2. Under the MDP we constructed above, Eq (10) holds

when discount factor γ = 1.
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argmax

π 1, ...,π r

∑
s ∈S

dπ (s)Vπ (s = (vc , vp ,Φvc ))

= argmax

π 1, ...,π r

AUC(Mω
G
|Ππ 1, ...,π r )

Proof. We denote the graph G in timestep t as Gt , then the

reward in timestep t + 1 is AUC(Mω
Gt+1
) − AUC(Mω

Gt
) Then, if

γ = 1, we have:

G0 =

∞∑
k=0

γkrk+1 =
∞∑
k=0

[AUC(Mω
Gk+1
) −AUC(Mω

Gk
)]

= −AUC(Mω
G0
) + lim

t→∞
AUC(Mω

Gt
)

TheG0 is the return in timestep t = 0 in MDP introduced in Section

2.3.1. Therefore, ∀s,Vπ (s) = −AUC(Mω
G0
) + limt→∞AUC(Mω

Gt
),

then :

max

π 1, ...,π r

∑
s ∈S

dπ (s)Vπ (s = (vc , vp ,Φvc ))

= −AUC(Mω
G0
) + max

π 1, ...,π r
lim

t→∞
AUC(Mω

Gt
)

= −AUC(Mω
G0
) + max

π 1, ...,π r
AUC(Mω

Gt
|Ππ 1, ...,π r )

Since G0 andM
ω
are determined, AUC(Mω

G0
) is a constant. Thus

the original equation Eq (10) holds. □

A.3 Proof for Theorem 3
Theorem 3. Eq(16) is equivalent to AUC variation,AUC(Mω

G′
|Π)−

AUC(Mω
G
|Π), and computing it only takes O(n) time.

Proof. If we prune one neighbor of vc and the original graph

G transform into G′, only Pvc would change to P ′vc . Say there are

n+ positive nodes (v+) and n− negative nodes (v−), denoted as

node setsV+ andV− respectively. And node setV∗ denotes the

nodes (v∗) whose label is not yvc . According to Eq (2), we have:

AUC(Mω
G′
|Π) −AUC(Mω

G
|Π)

=
1

n+n−
[
∑
V+

∑
V−

I(P ′v+ ≥ P ′v− ) −
∑
V+

∑
V−

I(Pv+ ≥ Pv− )]

∝F (yvc )F (P
′
vc ≥Pvc )

∑
V∗

I[(Pvc <v
∗ ≤P ′vc) ∨ (P

′
vc <v

∗ ≤Pvc )]

=RHS in Eq (14)

After traversing the whole node set once, we can count how

many nodes is eligible in Eq (14), which consumes O(n) time. □

Theorem 3 transforms the whole AUC computing process into a

local comparison, which boosts the efficiency.

B DATASETS INTRODUCTION
The Yelpchi collects reviews and ratings of all accommodation serv-

ing merchants in Chicago from Yelp.com, in which each review will

be regarded as a node in the graph with a 100-dimension feature

vector extracted from the metadata and review context, and labeled

as fraud if spamming behaviors are detected. Meanwhile, nodes

are connected in 3 relations with particular meanings: (1) R-U-R:
posted by the same user; (2) R-T-R: posted at the approximately

same time; (3) R-S-R: posted for the same merchant with identical

rating scores. The Amazon dataset regards users from Amazon.com

as nodes with 100-dimension feature, which are labeled as benign

with more than 80% up-votes. There are 3 diverse relations in Ama-
zon: (1) U-P-U: at least one common reviewing product; (2) U-S-U:
at least one identical rating within a week; (3) U-V-U: top-5% mu-

tual review TF-IDF similarities among all user pairs. The Books is an
extremely imbalanced dataset with single relation, in which nodes

represent books and edges imply co-purchasing. A node is marked

as fraud if over 20 users labeled it for unmatch sales ranking.

C REPRODUCIBILITY
For our baselines, GCN, GraphSAGE and GAT are implemented

based on DGL [40]. GraphConsis, CARE-GNN and PC-GNN are

implemented using public source code provided by the authors. DR-

GCN is implemented by ourselves as no source code is available.

Thewhole code forAO-GNN is implemented in PyTorch 1.6.0 [29].

The python version we choose is 3.8, and the launch Ubuntu 18.04

LTS server with 56 Intel E5-2680 cores and 512G memory. And for

CUDA running, we employ 1x NVidia Tesla V100 (32GB) to train

our model. Because we need to record gradient history in Alg. 2, it

is recommended to use devices with high memory.

C.1 Classifier Parameter Searching Module
First, we present structure-related hyper-parameters in the classifier

parameter searching module. For each parameter matrixW in each

layer of GNN, it remains the same feature dimension so that the

layer object is reusable. For the final MLP to produce predictive

results, we devise a hidden layer for it with 20% dimension of

the input vector, and the output activation function is Softmax.

Besides, we use conventional tricks to get better results: 1) we

add an affine layer before GNN to map the raw feature vectors

into a better representation space; 2) we use PReLu as GNN layer

activation function, which yields better results compared to ReLu; 3)

we apply dropout in each MLP layer with a dropout of 50%. In data

preprocessing, we use a standard scaler provided by scikit-learn

to normalize all feature data by the mean and variation observed

from the training set only. The optimizer for Alg. 2 is not aligned

to any predefined optimizers and we implement it under Pytorch

framework.

C.2 Edge Pruning Policy Searching Module
The policy network is an MLP with a hidden layer, of which the

dimension is as 60% of input vectors. Training the whole RL model

is quite skillful. Half of the trajectories are generated in an off-

policy way to avoid the policy being too deterministic. Moreover,

we conduct gradient ascend for every 100 trajectories. For tiny-

scale datasets or datasets easy to be classified, training multiple

policy networks may face a lack of training material. For instance,

in Amazon whose AUC result is very high, the predictive probabili-

ties hardly move after pruning. Under this circumstance, we can

oversample the trajectories generated from poorly classified nodes.
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