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5 Abstract—With the ever-increasing urbanization process, modeling people’s spatiotemporal activities from their online traces has

6 become a crucial task. State-of-the-art methods for this task rely on cross-modal embedding, which maps items from different modalities

7 (e.g., location, time, text) into the same latent space. Despite their inspiring results, existing cross-modal embeddingmethodsmerely

8 capture co-occurrences between itemswithout modeling their high-order interactions. In this paper, we first construct two graphs from

9 raw data records to represent the user interaction graph layer and activity graph layer and propose a hierarchical cross-modal embedding

10 method that takes the high-order relationships into consideration. The key notion behind our method is a novel hierarchical embedding

11 framework with meta-graphs connecting different layers. We introduce both inter-record and intra-recordmeta-graph structures, which

12 enable learning distributed representations that preserve high-order proximities across graphs from different layers. Our empirical

13 experiments on three real-world datasets demonstrate that our method not only outperforms state-of-the-art methods for spatiotemporal

14 activity prediction, but also captures cross-modal proximity at a finer granularity.

15 Index Terms—Spatiotemporal activity, mobile data, cross-modal, hierarchical embedding

Ç

16 1 INTRODUCTION

17 WITH the rapid progress of urbanization [1], [2] world-
18 wide, urban centres with large numbers of inhabitants
19 are incessant to gather. According to the World Urbanization
20 Prospects1 published by the UnitedNations in 2018, the urban
21 population of the world has increased to 4.2 billion,
22 55 percent of the world’s population, in 2018 and by 2050,
23 68 percent of the world’s population is projected to be urban.
24 With such rapid urbanization process around the world,
25 modeling people’s activities has been recognized as an essen-
26 tial task [3] to handlewith urban challenges like traffic conges-
27 tion and resource allocation. Besides, choosing when and
28 where to visit, eat or relax has become a fundamental demand
29 for almost everyone, no matter local residents or ecdemic tou-
30 rists. Answering questions like “Where should a shopping
31 mania who cares about accessible transportation go?”, “What
32 are the popular activities around the beach at dusk?” and

33“When is the fit time for visiting the changing of the guard at
34the palace?” has become challenging not only for tourists, but
35even for local residents in the city because of their complex
36spatiotemporal dynamics.
37Spatiotemporal activitymodeling, which aims at modeling
38people’s activities in different locations and time periods,
39plays an important role in solving these problems [3], [4]. The
40recent outgrowth of mobile data (e.g., geo-tagged social
41media, cellular data) sheds new light on automating this task.
42The number of worldwide mobile users has grown to 6.8 bil-
43lion2 and people can post their activities almost anytime and
44anywhere through their in-handGPS-enabledmobile devices.
45Therefore, the mobile data provide an extensive and detailed
46coverage of urban activities, serving as a natural proxy for
47modeling human activities in urban spaces [5], [6], [7], [8].
48The key to modeling spatiotemporal activities from
49mobile data is to define a cross-modal similarity that can cap-
50ture the proximities between different modalities, e.g., loca-
51tion, time, and text. Most previous approaches exploit latent
52variable models for this problem [9], [10], [11], [12], [13], but
53such approaches are unscalable and rely on many prior dis-
54tribution assumptions which may deviate from real data.
55Recently, cross-modal embedding methods [7], [14] have
56demonstrated inspiring results in this problem. Based on
57their co-occurrences within the same record, cross-modal
58embedding methods map items from different modalities
59into the same latent space to preserve their proximities.
60Despite the remarkable success of existing cross-modal
61embedding techniques, they suffer from two major draw-
62backs in capturing item similarities. First, the interactions
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64 explored. For example, Fig. 1 demonstrates a pair of tweets,
65 which is correlated through an “@” between two users. We
66 can see User A is talking about a newly released movie, but
67 the keywords are actually more related to the location and
68 time specified by User B. Such proximities can be captured
69 by high-order analysis of the information flow “text! user
70 ! user hlocation, timei” across records, but would bemissed
71 if we only consider co-occurrences within single record. If
72 we model user interactions at one layer and the activity at
73 another layer, this kind of inter-record relationship will exist
74 hierarchically across the two layers. Statistical data exhibit
75 these inter-record interactions are prevalent in real-world
76 corpus, e.g., 16.8 percent records havementioned other users
77 in UTGEO2011 dataset.3 Taking such inter-record relation-
78 ships into consideration may be useful for exploiting high-
79 order information in the results of cross-modal predictions
80 and facilitate the imperfects of previous alternatives.
81 Second, the semantics of the text intra the same record
82 are not fully exploited. Existing methods usually regard
83 each word as a basic textual unit and learn its embedding
84 individually. However, it is known that the semantic mean-
85 ing of a keyword depends on its context. As a result, con-
86 ventional methods may suffer from the word sense
87 disambiguation (WSD) problem since they fail to recognize
88 context of keywords and capture the disambiguated mean-
89 ing of them. For example, the keyword “ape” may indicate
90 “imitate uncritically”. But when surrounded by “drawn”
91 and “planet”, it should be recognized as “gorilla”, and the
92 phrase refers to a movie name. Therefore, the whole text
93 message needs to be considered together when embedding
94 the textual units of text-rich mobile data, which may
95 enhance the performance of cross-modal embedding.
96 In this paper, we propose spatiotemporal activity model-
97 ing via hierarchical cross-modal embedding (ACTOR for
98 short) frommobile data. Ourmethod embeds items from dif-
99 ferent modalities (location, time, text) into a latent vector

100 space, but differs from existing cross-modal embedding
101 techniques in that it adopts a hierarchical embedding frame-
102 work to preserve kinds of high-order item proximities. The
103 hierarchy lies between the different constructed graphs from
104 the raw mobile data. To fully encode the cross-modal co-
105 occurrence relationship and user interactions, we first con-
106 struct an activity graph and a user interaction graph, respec-
107 tively. Then two kinds of meta-graphs, namely inter-record
108 and intra-record meta-graphs are devised based on these
109 two graphs to encode high-order relationships. Each graph
110 acts as an embedding layer while nodes from different layers

111are embeddedwith the aid ofmeta-graphs. High-order prox-
112imity of vertices are preserved by the proposed meta-graphs
113because they include more than two pass-through hops in
114the graph. A hierarchical embedding framework is proposed
115based on meta-graphs which can preserve high-order prox-
116imities. Previous models could be considered as a single-
117layer special case of our framework.
118We have performed experiments on three real-world data-
119sets. The results demonstrate that the embeddings learned by
120ACTOR not only achieve the best quantitative performance in
121the cross-modal prediction tasks compared with the state-of-
122the-arts, but also preserve cross-modal proximities at a finer
123granularity. To the best of our knowledge, we are the first
124attempt to adopt hierarchical cross-modal embedding to
125model high-order information when modeling spatiotempo-
126ral activities.
127The main contributions of this paper are highlighted as
128follows:

1291) We propose a novel hierarchical cross-modal repre-
130sentation learningmethod for spatiotemporal activity
131modeling, which can preserve high-order proximities
132in mobile data. Different from previous studies, high-
133order information plays an important role in our
134embedding algorithm.
1352) We propose a flexible meta-graph based embedding
136framework namedACTOR,which can performhierar-
137chical embedding on graphs of different layers. Specif-
138ically, we investigate several kinds of high-order
139meta-graphs in the proposed embedding algorithm.
1403) We evaluate the effectiveness and efficiency of ACTOR
141on three real-world datasets. Experimental results dem-
142onstrate thatACTOR is a scalable framework and signif-
143icantly outperforms the state-of-the-art methods in the
144tasks of cross-modal prediction and neighbor search.
145The remainder of the paper is organized as follows. We
146summarize the related work in Section 2 and give the prob-
147lem definition and overview in Section 3. Subsequently,
148graph construction and proximity are presented in Section 4.
149We introduce the framework of our method in Section 5, and
150the experimental results are shown in Section 6.We conclude
151this paper in Section 7.

1522 RELATED WORK

153In this section, we briefly review the existing work related to
154our problem from the following three aspects: spatiotempo-
155ral activity modeling, graph representation learning and
156hierarchical graph embedding.

1572.1 Spatiotemporal Activity Modeling

158Spatiotemporal activitymodeling has been receiving increas-
159ing research interest in the past few years. Existing methods
160can be categorized into two categories: topic model based
161and embedding based methods. Generally, the former
162extends classic topic models to bridge different data modali-
163ties, by assuming each latent topic can generate observations
164over not only textual keywords but also locations. [15]
165extends LDA by assuming multinomial distribution on text
166and Gaussian distribution over regions and [16] extends the
167model to more complex distributions. Kling et al. [17] extend

Fig. 1. Interactions between records of text-rich mobile data.

3. A large-scale worldwide tweet dataset created by mobile users.
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168 PLSA with similar assumptions. One common limitation of
169 the above methods is that they have to impose distribution
170 assumptions on different modalities, which may not fit the
171 true distribution in the real data well. Recently, embedding-
172 basedmethods [7], [8], [14], [18], [19] have been proposed for
173 spatiotemporal activity modeling. Zheng et al. [18] build a
174 user-location-activity tensor and use factorization to learn
175 latent representations for users and locations for personal-
176 ized recommendation. Zhang et al. [7] propose a cross-modal
177 embedding which maps different spatial units, temporal
178 units and textual units into the same latent space to obtain
179 their vector representations. Later on, they also develop a
180 method [8] that processes continuous data streams and
181 reveals recency-aware spatiotemporal activities. To address
182 data scarcity problem, Zhang et al. design approaches [14] to
183 transfer knowledge from external sources. Recently, some
184 other researches focus on modeling sequential spatiotempo-
185 ral activities, e.g., human flow prediction, etc. For example,
186 Wang et al. [19] learn the representations from a flow graph
187 and a spatial graph. Feng et al. [20] propose an attentional
188 model named DeepMove to predict human mobility from
189 the sparse and lengthy trajectories. Lin et al. [21] propose a
190 deep learning-based convolutional model DeepSTN+ to pre-
191 dict crowd flows in the metropolis. Our work is related to [7]
192 as we both use graph embedding for cross-modal represen-
193 tation learning. However, they do not consider high-order
194 information like social relationship or semanticmeaning.

195 2.2 Graph Representation Learning

196 Graph representation learning (also known as graph embed-
197 ding) aims to learn low-dimensional representations for nodes
198 or sub-graphs whose topological correlativeness in original
199 graphs are preserved. Current methods can be categorized
200 into randomwalk based and neural network basedmethods.
201 DeepWalk [22] is a representative homogeneous graph
202 embeddingmethod, which generalizes the skip-grammodel in
203 language modeling to graphs and exploits random walks to
204 learn the features of vertices. Node2vec [23] investigates biased
205 random walk to capture the diversity of connectivity patterns
206 in networks. Tang et al. [24] introduce LINE, which defines loss
207 functions to preserve the first-order and second-order proxim-
208 ity. Our work is different from DeepWalk, node2vec and LINE
209 because they all belong to homogeneous graph embedding but
210 the activity graph in this paper is a heterogeneous graph.Meta-
211 path2vec [25] is a recent representative heterogeneous graph
212 embedding algorithm. It formalizes meta-path based random
213 walks on the heterogeneous graph, which is not directly appli-
214 cable formeta-graph based embedding in this paper.
215 Graph neural network [26], [27] is a series of neural net-
216 work based graph representation learning methods. Graph
217 convolutional neural network generalizes convolution oper-
218 ation to the graph domain, which can further be categorized
219 as spectral approaches and spatial approaches. Spectral
220 approaches [28], [29], [30], [31] work with a spectral repre-
221 sentation of the graphs and the learned filters depend on
222 the Laplacian eigenbasis. Spatial approaches [32], [33], [34]
223 define convolutions directly on the graph. Our work is dif-
224 ferent from these graph neural network approaches since
225 the main technical part of this paper belongs to random
226 walk based methods. Therefore, we do not adopt neural net-
227 work based methods as our baselines.

2282.3 Hierarchical Graph Embedding

229Recently, several attempts have been made to explore the
230hierarchical representations of nodes and graphs. For
231instance, Kriegel et al. [35] extend reference node embedding
232for approximating shortest path distance on graphs and pro-
233pose hierarchical embedding to solve the problem of high
234storage cost. Mousavi et al. [36] propose a hierarchical frame-
235work which extracts local and global features from different
236scales of given graph at the same time. NetHiex [37] incorpo-
237rates the hierarchical taxonomy into network embedding
238and HARP [38] decomposes a graph in a series of levels, and
239then embeds the hierarchy of graphs from the coarsest one to
240the original graph. DIFFPOOL [39] is a differentiable graph
241pooling module to generate hierarchical representations of
242graphs for the task of graph classification. Different from the
243above algorithms, the hierarchical learning process in this
244paper lies in modeling high-order relationships across or
245inside the records of text-rich mobile data, which are
246encoded by the proposed two kinds of meta-graphs.

2473 PROBLEM DEFINITION AND OVERVIEW

248In this section, we give the description of mobile data and
249the problem definition of spatiotemporal activity modeling.
250LetR ¼ fr1; r2; . . . ; rNg be a corpus ofmobile data records.
251Each record ri 2 R is defined by a tuple hti; li;Wii, i ¼ 1;
2522; . . . ;N , where

2531) ti is the creating timestamp of ri;
2542) li is a two-dimensional vector that represents the
255user’s location when ri is created;
2563) Wi ¼ fwi1 ; . . . ; wing is a bag of keywords denoting
257the text message of ri;
258The problem of spatiotemporal activity modeling in this
259paper is to mine R and find some regularities of people’s
260daily life. As there are three factors that are intertwined, an
261effective spatiotemporal activity model should accurately
262capture their cross-modal correlations. In another word,
263given any two of the three factors, the model is expected to
264predict the remaining one. Formally:

2651) Activity prediction. Given t�, l� and a text candidate
266set Cw ¼ fw1; . . . ; wmg, find the most possible activity
267keyword w� from Cw;
2682) Location prediction. Given t�,W � and a location candi-
269date set Cl ¼ fl1; . . . ; lmg, find the most possible loca-
270tion l� from Cl;
2713) Time prediction. Given l�, W � and a time candidate set
272Ct ¼ ft1; . . . ; tmg, find themost possible time t� from Ct.
273An overview of the ACTOR framework could be found in
274Fig. 2. Hotspot detection is first conducted on the rawmobile
275data records and then we design two kinds of graphs to
276describe the data. After that, the hierarchical embedding
277algorithm could be applied on those graphs for downstream
278tasks like cross-modal prediction.

2794 GRAPH CONSTRUCTION AND PROXIMITY

280In this section, we first construct the activity graph and user
281interaction graph. Then we define proximity of different
282orders. Last, the algorithm for detecting spatial and temporal
283hotspots is introduced.

LIU ET AL.: SPATIOTEMPORAL ACTIVITY MODELING VIA HIERARCHICAL CROSS-MODAL EMBEDDING 3
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284 4.1 Activity Graph and User Interaction Graph

285 Definition 1 (Activity Graph). An activity graph G ¼ ðV; EÞ
286 is a heterogeneous graph, where V ¼ fv1; . . . ; vng is a set of
287 vertices including spatial, temporal and textual units, and E is
288 a set of edges, eij 2 E if and only if vi and vj appear in the same
289 record, i 6¼ j, i; j 2 f1; . . . ; ng. Moreover, G is associated with
290 an vertex type mapping function fv : V ! Ov and an edge type
291 mapping function fe : E ! Oe, where Ov ¼ fT; L;Wg repre-
292 sents the vertex type set and Oe ¼ fTL;LW;WT;WWg repre-
293 sents the edge type set. Within each edge type, the edge weight
294 is set to be the co-occurrence count.

295 Besides the co-occurrence of these units, mobile users
296 often mention others in their own posts. Consequently,
297 we can construct a user interaction graph to model this
298 kind of behavior. Formally, we have the following
299 definition.

300 Definition 2 (User Interaction Graph). A user interaction
301 graph G0 ¼ ðV0; E0Þ is a homogeneous graph, where vi 2 V0 rep-
302 resents a mobile user and eij 2 E0 indicates that user i men-
303 tioned another user j, i; j 2 f1; . . . ; jV0jg. The edge weight is
304 set to be the mentioned counts.

305 As the example shown in Fig. 1, we can construct the
306 corresponding activity graph and user interaction graph
307 demonstrated in Fig. 3a. User B has mentioned user A in
308 the textual records so there is an edge between user A
309 and user B. The activity graph contains three modalities.
310 The spatial unit comes from the location of the activity
311 and the temporal unit derives from the created time-
312 stamp. These units are called spatial and temporal hot-
313 spots and the detection algorithm would be detailed in
314 Section 4.3. The textual unit refers to the bag of words
315 model in each record, where some frequent and mean-
316 ingless words are removed. Since each co-occurrence
317 appears only once, the weights of all edge are set to be 1
318 and we omit its weights for brevity.

319 4.2 Definition of Proximity

320 Based on a graph, we could define first-order proximity and
321 second-order proximity. Furthermore, high-order proximity
322 could also be introduced.

323 Definition 3 (First-order Proximity). Given a graph G ¼
324 ðV; EÞ, V ¼ fv1; . . . ; vng, the first-order proximity between a
325 pair of vertices ðvi; vjÞ is the edge weight if vi and vj are linked
326 by an edge. If no edge is observed between vi and vj, their first-
327 order proximity is 0.

328 The neighborhood relationship in [7] stems from spatial
329 and temporal continuities. Different from that, in this paper,
330 we define the neighborhood relationship as a second-order
331 proximity, which is widely used in network analysis [24],
332 [40]. In another word, for any two vertices in our activity
333 graph, the more neighbors they have in common, the more
334 related they are.

335Definition 4 (Second-order Proximity). Given a graph
336G ¼ ðV; EÞ, V ¼ fv1; . . . ; vng, the second-order proximity
337between a pair of vertices ðvi; vjÞ is the similarity between their
338adjacency distribution, i 6¼ j, i; j 2 f1; . . . ; ng. Mathemati-
339cally, let pvi ¼ ðai1; . . . ; ainÞ denote the first-order proximity of
340vi, then the second-order proximity between vi and vj is deter-
341mined by the similarity between pvi and pvj .

342In the activity graph, given a pair of vertices, the first-
343order proximity is defined to be the edge weight and the
344second-order proximity is the similarity between their adja-
345cency distribution. High-order proximity is defined to be
346the connection with more than two hops in the graph. Tak-
347ing Fig. 3a as an example, the temporal unit T1 has high-
348order proximity with the textual unitW2 via the connections
349in user interaction graph. We aim to design a hierarchical
350embedding framework with proximities of different orders
351preserved simultaneously.

3524.3 Hotspot Detector

353Due to the accuracy of the GPS-enabled devices and people’s
354different customs and schedules, the raw mobile data dis-
355plays obvious spatio-temporal variations and data sparsity.
356As addressed in [7], the spatial and temporal units in the
357activity graph of this paper comes from hotspot detection,
358since people’s activities in urban areas often burst in geo-
359graphical regions and time periods. Kernel density estima-
360tion is used to define the spatial and temporal hotspots since
361it has no assumption about the underlying data distribution.
362Suppose fx1; . . . ; xng are n data points in the d-dimensional
363spaceRd, the kernel density at any point x is given by

fðxÞ ¼ 1

nhd

Xn
i¼1

K
x� xi
h

� �
;

365365

366where Kð�Þ is the Epanechnikov [41] kernel function and h
367is the kernel bandwidth.

368Definition 5 (Spatial and Temporal Hotspots). R is a
369mobile data corpus, L and T are the collections of locations and
370timestamps in R, respectively. A spatial hotspot is defined as a
371local maximum of the kernel function estimated from L. Simi-
372larly, a temporal hotspot is defined to be a local maximum of the
373kernel function estimated from T .

374The mean shift [41] algorithm is employed to detect the
375spatial and temporal hotspots. For a given data point x,
376which can be either location or timestamp, let yðkÞ be the cen-
377ter of current window in iteration k, and fx1; . . . ; xmg be the
378m data points inside the window. The mean shift vector for

379yðkÞ ismðyðkÞÞ ¼
Pm

i¼1ðxi�y
ðkÞÞ

m , then yðkÞ is shifted bymðyðkÞÞ as
380shown in Equation (1). The sequence fyðkÞg will converge to
381the hotspot that x belongs to. All the hotspots can be detected
382after performing this algorithm for every data point.

yðkþ1Þ ¼ yðkÞ þmðyðkÞÞ ¼ 1

m

Xm
i¼1

xi: (1)
384384

385

386After hotspot detection, for a new data point, we can find
387the hotspot that it belongs to by calculating the distances
388with all the detected hotspots and choosing the closest one.

Fig. 2. The overview framework of ACTOR.
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389 5 THE ACTOR APPROACH

390 In this section, we detail the proposed ACTOR approach.
391 First, we introduce the definitions of the meta-graphs encod-
392 ing inter-record and intra-record relationships of mobile data.
393 Then we propose the hierarchical embedding framework
394 based on the constructed graphs and proposed meta-graphs.
395 Finally, we give the complete algorithm of ACTOR and some
396 discussions about it.

397 5.1 Meta-Graph

398 Definition 6 (Meta-Graph). A meta-graph S ¼ ðX ;AÞ is a
399 sub-graphical scheme of graph G ¼ ðV; EÞ, where X � V is a
400 set of vertices along with its vertex type, and A is the adjacent
401 relationship defined on X .

402 The intra-record meta-graph encodes the co-occurrence
403 relationship inside the records shown as M0 in Fig. 3b.
404 The inter-record meta-graph aims to reflect the relation-
405 ships among different records. According to different
406 node types that it connects, it can be further categorized
407 into M1 – M6 in Fig. 3b. It can be noticed that the inter-
408 record meta-graphs depict high-order relationships
409 between units in the activity graph since they contain
410 more than two hops in the graph. For example, we can
411 find an instance of M4 in Fig. 3a.

412 5.2 Hierarchical Embedding Framework

413 Overall, as demonstrated in Fig. 3a, the framework contains
414 three layers, the record layer, the activity graph layer and the
415 user interaction graph layer. Correspondingly, the embedding
416 framework can be decomposed into two steps. First, the user
417 interaction graph is embedded to get the user embedding vec-
418 tors from their interactive behaviors. Second, we devise a novel
419 approach using meta-graph to model the high-order relation-
420 ships between the user interaction graph and activity graph.
421 The inter-record meta-graph connects two layers and guides
422 the initialization of units in the activity graph from the embed-
423 ding of user interaction graph. The intra-record meta-graph is
424 employed tomodel the cross-modal co-occurrence relationship

425within the same record. The embedding objective is built based
426on both inter-record and intra-recordmeta-graphs.

4275.2.1 Initialization

428To begin with, the user interaction graph is embedded using
429LINE [24] and it is desired that those users who interact with
430each other frequently are close in the vector space. For those
431users who have never interacted with others, we use a random
432vector to represent them. The user embeddings are used to ini-
433tialize the nodes in the activity graph. For a node in the activity
434graph, it may have connections with different users and we
435choose the user with the highest weight to get the initial
436embedding vector.

4375.2.2 Embedding

438Similar with the skip-gram [42] model, for each center vertex
439vi and its known embedding vector xxi, we want to predict
440the context embedding xx0j of its context vertex vj. The context
441of vi could be defined as all the vj that feðvi; vjÞ belongs to the
442same edge type, thus the context of a vertex may differ with
443different edge types. Given an edge type e and the center ver-
444tex vi, the probability of context vj generated by vertex vi
445could be defined as Eq. (2).

peðvjjviÞ ¼
expðxx0j

TxxiÞP
feðvi;vkÞ¼e expðxx

0
k
TxxiÞ

; (2)

447447

448peð�jviÞ defines a model distribution over the context of ver-
449tex vi and the empirical distribution p̂eð�jviÞ could be defined
450by Eq. (3), where aij is the weight of the edge ðvi; vjÞ and dei
451is the degree of vertex vi in the edge type e.

p̂eðvjjviÞ ¼
aij
dei

; where dei ¼
X

feðvi;vkÞ¼e
aik: (3)

453453

454

455To fully reconstruct the co-occurrence relationship, the
456conditional distribution of the contexts peð�jviÞ specified by
457the low-dimensional representation should be close to the
458empirical distribution p̂eð�jviÞ. Therefore, we minimize the
459following objective function:

Fig. 3. (a) An illustrative example of the hierarchical embedding framework. Ti and Li (i ¼ 1; 2) are the spatial and temporal units derived from the
timestamps and locations of the tweets. The textual units Wi (i ¼ 1; 2) correspond to the words in the dashed box. Two units are connected if they
appear in the same record. User B mentioned user A in the text thus the two users are linked. (b) The intra-record meta-graph M0 are constructed
according to the co-occurrence relationships of the spatial, temporal and textual units, which models high-order relationships inside records. The
inter-record meta-graphs are built between the records who mentioned each other via the user interaction graph, which model high-order relation-
ships between records. M1 to M6 are categorized according to different combinations of units connected to the users. The nodes and edges marked
in blue color denote an instance of M4.
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Je ¼
X
vi2Ve

�iDðp̂eð�jviÞ; peð�jviÞÞ; (4)

461461

462 where Ve ¼ fv 2 Vj9v0 2 V; s:t: feðv; v0Þ ¼ eg, �i is the impor-
463 tance weight of vertex vi and Dð�; �Þ is the distance between
464 two distributions. In this paper, we choose the KL-divergence
465 as the measure between two distributions and evaluate the
466 importance of vertex vi by its degree dei . In such settings, the
467 objective function could be rewritten as

Je ¼ �
X

feðvi;vjÞ¼e
aijlog peðvjjviÞ: (5)

469469

470

471 Since we have defined edge types and meta-graphs to
472 preserve different orders of proximity, the overall objective
473 function is

J ¼
X

e2Mintra

Je þ
X

e2Minter

Je; (6)

475475

476 where Mintra ¼ fTL; LW;WT;WWg is the set of edge types
477 in the intra-record meta-graph4 andMinter ¼ fUT;UW;ULg
478 is part of the edge types in the inter-record meta-graph.

479 5.2.3 Optimization

480 When optimizing Eq. (5), the denominator in Eq. (2) requires
481 the summation over all the edges of type ewith center vertex
482 vi, which is highly computationally expensive. We adopt the
483 approach of negative sampling proposed in [43]. Specifically,
484 it specifies the following objective function for each edge
485 ðvi; vjÞ:

JNEG ¼ �log sðxx0j
T
xxiÞ �

XK
k¼1

Evk�P ðvÞlog sð�xx
0
k
T
xxiÞ; (7)

487487

488 where s is the sigmoid function. The first term models the
489 observed edge ðvi; vjÞ and the second term models the nega-

490 tive edges drawn from the noise distribution P ðvÞ / d
3
4
v,

where dv is the out-degree of vertex v and K is the number

of negative edges.
491 The updating rules for different variables can be derived
492 by taking the derivatives of the above objective function
493 and we list them as follows.

@JNEG

@xxi
¼ �½1� sðxx0j

T
xxiÞ�xx0j þ sðxx0k

T
xxiÞxx0k (8)

495495

496

@JNEG

@xx0j
¼ �½1� sðxx0j

T
xxiÞ�xxi (9)

498498

499

@JNEG

@xx0k
¼ sðxx0k

T
xxiÞxxi: (10)

501501

502 The updating rule for edge type e can be written as Eq. (11).

@Je
@xxi
¼

X
feðvi;vjÞ¼e

aij
@JNEG

@xxi
: (11)

504504

505

506 Following [24], we sample from the original edges with
507 sampling probabilities proportional to the original edge

508weights. Thus we could treat the weights of sampled edges
509as equal and choose a suitable learning rate h for the algo-
510rithm. The alias sampling [44] method is used for edge sam-
511pling, which takes Oð1Þ time when repeatedly drawing
512samples from the same distribution. We adopt the asyn-
513chronous stochastic gradient algorithm [45] for optimizing
514Equation (5). In each step, a mini-batch of edges from a cer-
515tain kind of meta-graph are sampled, suppose the size of
516mini-batch is m, and the embedding vectors are updated by
517Equations (12), (13), and (14).

xxi  xxi � h
X
m

@JNEG
@xxi

(12) 519519

520

xx0j  xx0j � h
X
m

@JNEG
@xx0j

(13) 522522

523

xx0k  xx0k � h
X
m

@JNEG
@xx0k

: (14) 525525

526

5275.3 ACTOR Algorithm

528ACTOR is a hierarchical activity modeling framework based
529on mobile data generated in urban areas and the learning
530scheme of ACTOR is summarized in Algorithm 1.

531Algorithm 1. ACTOR

532Input: R: A corpus of mobile data,Minter: inter-record meta-
533graphs,Mintra: intra-recordmeta-graphs, d: The embed-
534ding dimension, K: Number of negative samples,
535MaxEpoch: Maximum iteration epochs, m: Number of
536sampling edges.
537Output: The embedding vectors.
5381: Apply the mean-shift algorithm to the timestamps and
539locations to detect spatial and temporal hotspots;
5402: Construct an activity graph G ¼ ðV; EÞ, V ¼ fv1; . . . ; vng and
541a user interaction graph G0 ¼ ðV0; E0Þ;
5423: Train the user interaction graph with LINE and get the user
543embeddings;
5444: Initialize the center vectors fxxigni¼1 and context vectors
545fxx0ig

n
i¼1 of units in the activity graph with the corresponding

546pretrained user embedding vectors;
5475: for k ¼ 0 toMaxEpoch� 1 do
5486: for e 2Minter do
5497: Samplem edges from E of type e;
5508: Updating fxxig and fxx0igwith Equations (12), (13),
551and (14)
5529: for e 2Mintra do
55310: Samplem edges from E of type e;
55411: Updating fxxig and fxx0igwith Equations (12), (13),
555and (14)
55612: return fxxigni¼1 and fxx0ig

n
i¼1.

557Given a corpus of mobile data R, spatial and temporal
558hotspots are first detected (Line 1). After that, these hot-
559spots, together with the textual units are constructed into an
560activity graph and a user interaction graph is built based on
561the mentioned records (Line 2). Then the user interaction
562graph is trained to get the user embedding vector (Line 3).
563For each vertex in the graph, we initialize its center vector
564and context vector with its pre-trained user embedding
565vector (Line 4). Then, we alternate the graph embedding

4. For the bag-of-words model in the intra-record meta-graph, we
take the sum of all the textual unit embeddings in the same record.
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567 meta-graphs and update the center and context vectors in
568 the iteration (Line 5-11). Finally, the output is the center vec-
569 tors and context vectors of all the vertices (line 12).

570 5.4 Discussions

571 We argue that ACTOR is a high-order proximity preserved
572 cross-modal embedding algorithm. The inter-record meta-
573 graph encodes the high-order proximity from activity graph
574 to the user interaction graph since each instance of them con-
575 tains more than two hops in the graph. The hierarchical
576 embedding framework tends to preserve high-order proxim-
577 ity in the embedded space as encoded by themeta-graphs.
578 Besides, ACTOR is a general hierarchical cross-modal
579 embedding framework, where meta-graphs can be flexibly
580 assigned to probe connections between different graphs.
581 Thus previous methods could be considered as special cases
582 of ACTOR. For instance, CrossMap [7] could be obtained by
583 embedding only the activity graph without hierarchical
584 embeddding strategy.
585 Next we analyze the time complexity of the proposed
586 ACTOR. Suppose d is the dimension of embedding vector
587 and K is the number of negative samples, each step of opti-
588 mization takes OðdðK þ 1ÞÞ, under the condition that sam-
589 pling an edge from the alias table takes constant time. And
590 the iteration step is usually proportional to the number of
591 edges OðjEjÞ. Therefore, the overall time complexity of our
592 proposed ACTOR is OðdKjEjÞ.

593 6 EXPERIMENT

594 In this section, we report our experimental results on quali-
595 tative and quantitative evaluations of ACTOR on three real-
596 world datasets.

597 6.1 Experimental Setup

598 6.1.1 Datasets

599 We conducted the experiments on three public benchmark
600 datasets.

601 � UTGEO2011 [46] contains 38 million tweets collected
602 across the entire globe between September 4th and
603 November 29th, 2011. A subset is provided in [46]
604 with around 10,000 users and we adopt it as bench-
605 mark dataset in our paper.
606 � TWEET [7] consists of 1.1 million geo-tagged tweets
607 published in Los Angeles during August 1st to
608 November 30th, 2014.
609 � 4SQ [7] includes around 0.6 million Foursquare
610 checkins posted in New York from August 2010 to
611 October 2011.

612The train/valid/test split is done randomly from all the
613records and the detailed statistics of the datasets can be
614summarized in Table 1, including the scale of the corre-
615sponding constructed activity graphs.

6166.1.2 Compared Methods

617� LGTA [17] can discover and compare geographical
618topics from GPS-associated documents, combining
619both location and text information.
620� MGTM [16] is a state-of-the-art geographical topic
621model which captures dependencies between geo-
622graphical regions based on a multi-Dirichlet process.
623� Metapath2vec [25] is a state-of-the-art heterogeneous
624embedding algorithm. It performs heterogeneous
625random walks on the graph according to the pre-
626defined meta-paths and then encodes each vertex
627into vector space.
628� LINE [24] defines loss function to preserve the first-
629order or second-order proximity separately for graph
630embedding. We also adapt LINE to the activity graph
631with the auxiliary vertex type of U and derive LINE
632(U) as another baseline.
633� CrossMap [7] is a state-of-the-art method for spatio-
634temporal activity modeling. It jointly maps different
635units into the latent space but only models the co-
636occurrence and neighborhood relationships. Similar
637as LINE(U), we also extend CrossMap on the activity
638graph with the auxiliary vertex type of U and derive
639CrossMap(U) for a comprehensive comparison.
640� ACTOR: the model proposed in this paper.

6416.1.3 Parameter Settings

642The major parameters of ACTOR include the latent embed-
643ding dimension d, learning rate h, number of negative sam-
644ples K, the batch size m, the maximum epoch MaxEpoch.
645For the three datasets above, we set d ¼ 300, h ¼ 0:02,
646K ¼ 1, m ¼ 256, MaxEpoch ¼ 100. For the baselines, we
647finely tuned the corresponding parameters in order to per-
648form a fair comparison. In our experiments the reported
649results are the average of five runs.
650The ACTOR algorithm is implemented in C++ and
651experiments are conducted on a CentOS 6.9 server, with 32
652cores Intel(R) Xeon(R) 2.10 GHz CPU and 64 GB memory.

6536.2 Cross-Modal Prediction

6546.2.1 Prediction Method

655We quantitatively evaluate the performance of ACTOR by
656cross-modal prediction. It can be decomposed into three
657sub-tasks: activity prediction, location prediction and time
658prediction.

TABLE 1
Statistics of Datasets

DATA #Tweets #Train #Valid #Test jVj jEj #Spatial #Temporal #Word #User

UTGEO2011 671,978 650,000 5,000 10,000 148,287 16,081,265 8,946 34 20,000 119,307
TWEET 1,188,405 1,000,000 20,000 50,000 174,578 28,521,412 10,420 27 20,000 144,131
4SQ 479,298 460,000 5,000 10,000 73,048 4,920,504 11,456 29 3,973 57,590

LIU ET AL.: SPATIOTEMPORAL ACTIVITY MODELING VIA HIERARCHICAL CROSS-MODAL EMBEDDING 7
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660 have obtained vector representations for all the units in the
661 training corpus. For each query in the test set, with the time
662 and text modalities known, the location candidate set is
663 composed of the ground truth location and noisy locations
664 that are randomly chosen from the spatial hotspots of the
665 test set. Then we could compute the cosine similarity of
666 each candidate location to the observed timestamp and key-
667 words and rank them in the descending order in terms of
668 similarity. The ranked list is regarded as the predicted
669 result. In our experiments, besides the ground truth, 10
670 noisy candidates are randomly chosen from the test corpus
671 and hence the size of candidate set is 11.

672 6.2.2 Evaluation Metric

673 The Mean Reciprocal Rank (MRR) is adopted to quantify the
674 performance of this model. Formally, given a set Q of
675 queries, the MRR is the average of the reciprocal ranks of
676 each query in Q, as Eq. (15) shows.

MRR ¼ 1

jQj
XjQj

i¼1

1

ranki
; (15)

678678

679 where ranki refers to the rank position of the ground truth
680 for the ith query. Specifically, in this paper, each record in
681 the test corpus is a query and ranki refers to the rank posi-
682 tion of the ith record.

683 6.2.3 Experimental Results and Discussions

684 The experimental results of various methods on the three
685 datasets are presented in Table 2. For each dataset, we dem-
686 onstrate the MRR metrics on three prediction tasks. From
687 the table, we observe that ACTOR consistently outperform
688 all the other methods on the two datasets, with at most
689 85.9 percent improvements compared with LGTA and
690 16.0 percent improvements with CrossMap.
691 LINE and metapath2vec are two representative graph
692 embedding algorithms. LINE is designed mainly for homo-
693 geneous graph thus it performs much more poorly than
694 ACTOR in embedding activity graphwhich contains vertices
695 of different types. Metapath2vec is developed for heteroge-
696 neous graph but the embeddings rely on the generated ran-
697 dom walks. We have tried to use the proposed meta-graphs
698 M1 –M6 as meta-paths to generate randomwalks but the pre-
699 dict results are far from satisfactory. It is difficult to perform

700random walk on the user interaction graph since it is rarely
701sparse. Therefore, we explore other meta-paths and report
702the best scores on these three datasets in Table 2. The meta-
703path for UTGEO2011 and TWEET is L�W� T�W but for
7044SQ, both L�W� T�W and T� L�W�W are adopted.
705The window size and number of negative samples are set to
706be 3 and 5 respectively.
707LINE and CrossMap are not originally designed for
708high-order embedding but they could be simply modified
709and applied on the activity graph with auxiliary vertex
710type U, which are the results of LINE(U) and CrossMap
711(U). Compared with LINE and CrossMap, the user verti-
712ces bring extra information and obtain performance
713improvements to some extent. However, through hierar-
714chical cross-modal embedding, ACTOR could encode
715high-order proximities into the embedding procedures
716and consequently ACTOR performs better than LINE(U)
717and CrossMap(U).

7186.2.4 Case Study

719To figure out the reason why ACTOR outperforms other
720baselines, especially CrossMap, we perform cross-modal
721prediction on the same record and noise candidates using
722these two methods, then observe their ranking results.
723For activity prediction task, the original tweet is shown as
724Fig. 4. The tweet was posted at a prop room while the
725attached text directly mentioned it. The aim is to tell the most
726possible text from the mix of 1 groundtruth and 10 randomly
727chosen noise text. The ranking results of ACTOR and Cross-
728Map are presented in Fig. 5. As we can see, the groundtruth
729text ranked 1st in ACTOR but 7th in CrossMap. The hierar-
730chical embeddings adopted by ACTOR could capture the
731cross-modal correlation precisely thus it can match the text
732with the location closely.

Fig. 4. The ground truth tweet for activity prediction.

TABLE 2
Mean Reciprocal Rank for Cross-Modal Retrieval

Data UTGEO2011 TWEET 4SQ

Task Text Location Time Text Location Time Text Location Time

LGTA 0.3571 0.3440 / 0.4615 0.4439 / 0.5739 0.5409 /
MGTM 0.2993 0.3022 / 0.3615 0.3619 / 0.4538 0.4191 /
metapath2vec 0.5062 0.5267 0.3169 0.5083 0.5369 0.2986 0.8475 0.8673 0.3262
LINE 0.5433 0.5442 0.3427 0.6246 0.5997 0.3235 0.9076 0.8954 0.3637
LINE(U) 0.5830 0.5798 0.3578 0.6315 0.6066 0.3297 0.9078 0.8972 0.3719
CrossMap 0.5778 0.6015 0.3852 0.6701 0.6561 0.3439 0.9393 0.9138 0.3690
CrossMap(U) 0.5808 0.6070 0.3712 0.6894 0.6632 0.3469 0.9441 0.9137 0.3735

ACTOR 0.6207 0.6275 0.3885 0.6991 0.6805 0.3509 0.9519 0.9211 0.3758
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733 For time prediction task, the original tweet is shown as
734 Fig. 6. The task is to predict the most possible time when the
735 performance took place at this music bar. As Table 3 shows,
736 the top 3 timestamps both methods returned are acceptable
737 since most bars will arrange their performance at night,
738 when the number of customers reaches the peak of a day.
739 For location prediction task, the original tweet was
740 posted at a pavilion as Fig. 7 shows, which can be

741inferred from the text as well. ACTOR ranked the
742groundtruth in the 1st place. The top 4 places that Cross-
743Map returned are listed in Fig. 8, where the groundtruth
744was in the 3rd place. Although we can find another pavil-
745ion near the 1st place, there is no obvious connection
746between grocery store and the 2nd place, neither the 4th
747place. We infer that ACTOR could capture the function of
748the place due to multiple orders of proximities preserved
749in the activity graph while CrossMap may have some
750inaccurate correlations.

7516.3 Ablation Test

752We identify two key structures in our proposed ACTOR
753framework: inter-record structure and intra-record structure.
754Inter-record structure refers to the hierarchical embedding
755framework induced by the inter-record meta-graph, say the
756pre-training of user interaction graph and embedding with
757Minter ¼ fUT;UW;ULg in the activity graph. Intra-record
758structure refers to the bag of words model in the intra-record
759meta-graph, that we consider words together rather than
760treat them as individual textual unit. We address the model
761without inter-record structure as ACTOR w/o inter, the
762model without intra-record structure as ACTOR w/o intra,
763and the complete model proposed in this paper as ACTOR-
764complete. The ablation test results can be found in Table 4.
765As demonstrated in the table, both inter and intra
766structures of ACTOR contribute to the final performance. No

Fig. 6. The ground truth tweet for time prediction.

Fig. 7. The ground truth tweet for location prediction.

Fig. 8. Ranking results of CrossMap for location prediction.

TABLE 3
Ranking Results of Both Methods for Time Prediction

Timestamps ACTOR CrossMap

Fri Oct 24 23:05:35 CDT 2014 1 7
Mon Oct 13 20:57:17 CDT 2014 2 3
Thu Aug 14 20:34:31 CDT 2014 3 5
Sat Aug 16 21:51:02 CDT 2014 4 1
Mon Aug 25 21:57:48 CDT 2014 5 9
Wed Aug 13 01:14:54 CDT 2014 6 2
Tue Oct 14 01:17:35 CDT 2014 7 6
Fri Oct 24 19:06:56 CDT 2014 8 8
Mon Aug 11 10:26:08 CDT 2014 9 4
Wed Nov 12 15:40:06 CST 2014 10 10
Wed Aug 20 11:47:08 CDT 2014 11 11

Fig. 5. Ranking results of both methods for activity prediction. ACT is
short for ACTOR and CM is short for CrossMap.

LIU ET AL.: SPATIOTEMPORAL ACTIVITY MODELING VIA HIERARCHICAL CROSS-MODAL EMBEDDING 9
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768 would decline a little. For UTGEO2011, hierarchical embed-
769 ding strategy and inter-record meta-graph contribute more
770 than intra-record meta-graph since the performance of
771 ACTOR w/o inter is worse than ACTOR w/o intra. For
772 TWEET and 4SQ dataset, we have no information about the
773 user interactions but we can still link the units in the activity
774 graph to the user and part of the inter-record meta-graph
775 could also help with the cross-modal correlation as we can
776 conclude from the results of ACTOR w/o inter for TWEET
777 and 4SQ.

778 6.4 Neighbor Search

779 Next, we investigate the effectiveness of the obtained
780 embeddings by qualitative comparisons. In particular, we
781 evaluate the resultant cross-modal correlations through the
782 results under different kinds of queries, namely spatial
783 query, temporal query and textual query, on the TWEET
784 dataset. From the previous comparison, CrossMap is shown
785 as the strongest competitor, hence we focus on comparing
786 our ACTOR and CrossMap in such evaluation.

787 6.4.1 Spatial Query

788 Fig. 9 shows the results when we query the location of the
789 port of Los Angeles, whose latitude and longitude is
790 (33.7395, -118.2599). The results of ACTOR are closely
791 related to the port, like “dock”, “departure” or the place
792 “port of LA”. However, CrossMap prefers some general
793 words like “today”, “time”, etc. Clearly, ACTOR performs
794 better in capturing the characteristic of the place than
795 CrossMap.

796 6.4.2 Temporal Query

797 Fig. 10 shows the results of the temporal query of
798 “10:00pm”. From the figure, we observe both methods
799 return temporal hotspots close to 10:00pm but the textual
800 results differ a lot. Unlike CrossMap returns some general
801 words like “tonight” or “like”, ACTOR finds some specific

802activities in the evening, like listening to music,5 watching
803TV series,6 sports programs,7 and some information about
804the occurring places, e.g., “dance hall” or “box seat”. The
805results also demonstrate that ACTOR might correlate more
806specific activities.

8076.4.3 Textual Query

808For the textual query, we search the popular sports bar
809“Patrick Molloy’s Sports Pub” at Hermosa Beach, LA. The
810keyword for this bar is “patrick_molloy_sport_pub” in our
811vocabulary and the search results are shown in Fig. 11. Both
812methods return temporal hotspots around free time and spa-
813tial hotspots near the pub except one outlier in the result of
814CrossMap, but the textual results8 differ. It is worthmention-
815ing that ACTOR returns several specific words containing
816hermosa beach in which the pub is located at while Cross-
817Map just returns similar pubs. Clearly, ACTOR embeds
818more information from thewhole text than CrossMap.

8196.5 Scalability

820We finally evaluate the scalability of ACTOR on the TWEET
821dataset as we expand the sampling edges or increase the
822computing threads. The basic number of sampling edges is
8234 million. First, we investigate the performance of ACTOR
824by multipling the sampling edges 1, 2, 3, 4 times and the
825total running time is shown in Fig. 12a, from which we
826argue that ACTOR is robust in dealing with increasing sam-
827pling edges as the running time scales linearly with the
828number of sampling edges. To study the strong scalability
829of ACTOR, we keep the basic number of sampling edges
830and vary the computing thread from 1 to 4. Fig. 12b exhibits
831the corresponding results. From the figure we argue that
832ACTOR is highly parallelizable using multi-thread stochas-
833tic gradient algorithm. To test the weak scalability, we keep
834the threads and edges growing in pace with each other and
835the performance is shown as Fig. 12c, the running time
836remains nearly constant as the simultaneous increase of
837both threads and edges. From the results we can conclude
838that ACTOR achieves a good scaleup. To sum up, the pro-
839posed ACTOR demonstrates a good scalability and is practi-
840cal for large-scale datasets.

TABLE 4
Mean Reciprocal Rank for Ablation Test

Data UTGEO2011 TWEET 4SQ

Task Text Location Time Text Location Time Text Location Time

ACTOR w/o inter 0.6040 0.6025 0.3723 0.6930 0.6742 0.3498 0.9492 0.9148 0.3754
ACTOR w/o intra 0.6072 0.6104 0.3628 0.6904 0.6635 0.3481 0.9443 0.9137 0.3765

ACTOR-complete 0.6207 0.6275 0.3885 0.6991 0.6805 0.3509 0.9519 0.9211 0.3758

Fig. 9. Spatial query of port of Los Angeles.

5. Ricky Martin is one of the iconic figures of the Latin American
music scene.

6. Masters of Sex is an American period drama television series, the
second season of which first aired on July 13, 2014 and last aired on
September 28, 2014, receiving critical acclaim on Rotten Tomatoes and
Metacritic.

7. Jim Fox is a Canadian retired former professional ice hockey
player who played nine seasons in the NHL for the Los Angeles Kings.
Now he is one of the analysts of FOX Sports West’s Kings.

8. American Junkie, Baja Sharkeez, Abigaile are all sports bars.
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841 7 CONCLUSION

842 In this paper, we study the problem of spatiotemporal activity
843 modeling and propose ACTOR, a hierarchical cross-modal
844 embedding framework. The key technical contribution lies in
845 the design of meta-graphs for hierarchical embedding to cap-
846 ture high-order relationship of spatiotemporal activities.
847 Combined with these meta-graphs, ACTOR jointly embeds
848 all spatial, temporal and textual units into the same space
849 where proximities of different orders are simultaneously
850 probed. We conduct extensive experiments on three real-
851 world datasets. The empirical results demonstrate that
852 ACTOR significantly outperforms other baselines due to the
853 preserved high-order proximities.
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