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Abstract

Live streaming has become a cornerstone of today’s internet, en-
abling massive real-time social interactions. However, it faces severe
risks arising from sparse, coordinated malicious behaviors among
multiple participants, which are often concealed within normal
activities and challenging to detect timely and accurately. In this
work, we provide a pioneering study on risk assessment in live
streaming rooms, characterized by weak supervision where only
room-level labels are available. We formulate the task as a Multiple
Instance Learning (MIL) problem, treating each room as a bag and
defining structured user—timeslot capsules as instances. These cap-
sules represent subsequences of user actions within specific time
windows, encapsulating localized behavioral patterns.

Based on this formulation, we propose AC-MIL, an Action-
aware Capsule MIL framework that models both individual be-
haviors and group-level coordination patterns. AC-MIL captures
multi-granular semantics and behavioral cues through a serial and
parallel architecture that jointly encodes temporal dynamics and
cross-user dependencies. These signals are integrated for robust
room-level risk prediction, while also offering interpretable evi-
dence at the behavior segment level. Extensive experiments on
large-scale industrial datasets from Douyin demonstrate that AC-
MIL significantly outperforms MIL and sequential baselines, estab-
lishing new state-of-the-art performance in room-level risk assess-
ment for live streaming. Moreover, AC-MIL provides capsule-level
interpretability, enabling identification of risky behavior segments
as actionable evidence for intervention. The project page is available
at: https://qiaoyran.github.io/AC-MIL/
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1 Introduction

Live streaming has grown rapidly in recent years and established
itself as an essential component of digital services globally. Lever-
aging real-time interaction and strong social presence, it supports
communication, entertainment, and e-commerce on major plat-
forms, including TikTok, Twitch, YouTube, etc.

A live streaming room is the basic unit of such services, where
user interactions are centered (c.f. Figure 1). Each room involves
a streamer who delivers verbal and graphic content and engages
with viewers in real time. Viewers participate through chats, virtual
gifts, and other interactive actions, creating a dynamic and socially
rich environment.

However, the very features that make live streaming engaging,
i.e., its immediacy, interactivity, and open access, also introduce
various risks within streaming rooms. Among these, live-streaming
fraud is particularly common and harmful. Fraudsters take advan-
tage of the fast-paced, real-time nature of lives to quickly lure
viewers into scams. In many cases, streamers collaborate with
planted viewers, who use interactive features to coordinate with the
streamer, building false trust and pushing other viewers into quick
decisions. Fraudsters commonly adopt scripted routines within live
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Figure 1: Illustration of a toy live streaming room. (a) A vir-
tual screenshot showing the streamer continuously deliv-
ering verbal and visual content, alongside multiple interac-
tive feature icons for viewers. (b) Viewers engage with the
streamer in real time through chats, likes, virtual gifts, etc.,
while the streamer responds viewer interactions.

streaming rooms to systematically guide viewers toward external
platforms where scams are executed.

Detecting such risks is far from trivial, as the live streaming
context poses unique challenges for risk assessment:

(i) Complex and indirect signals. Live streaming generates
large-scale, dynamic user actions across multiple modalities, such
as video, audio, text, and metadata. Moreover, because actual scams
typically occur off-platform, the live room may contain only in-
direct, scripted routines and coordinated interactions as evidence.
These trails are hidden within complex behavior data and thus are
difficult to detect.

(ii) Strict performance requirements. Risk detection systems
must achieve a high recall ratio while maintaining a low false alarm
rate to protect users’ experience and avoid blocking legitimate activ-
ities. In addition, decisions must be explainable and able to pinpoint
specific suspicious segments of actions to justify suspensions.

(iii) Timeliness constraints. Risk assessment must function in
near real-time to disrupt fraudulent activities before more viewers
can be deceived, considering the limited duration of live sessions
and the short viewer stay (e.g., around 30 minutes on average).
Moreover, relevant behavioral data begins to accumulate only once
a live streaming room starts.

To tackle these challenges, we formulate risk assessment in live
streaming platforms as a Multiple Instance Learning (MIL) prob-
lem, where labels are only available for groups of instances, called
bags, rather than for individual instances [5]. This formulation is
well-suited to bridge the gap between coarse, room-level super-
vision and the need for fine-grained, interpretable detection of
correlated and evolving suspicious behaviors.

Defining instances for MIL in this context is challenging. Individ-
ual user actions are often sparse, diverse, and appear harmless in
isolation. However, fraudulent patterns emerge through temporal
dependencies and coordinated behaviors across users. To preserve
such contextual cues, we define each instance as a user—timeslot
capsule, i.e., a subsequence of actions performed by a user within

Yiran Qjao et al.

a specific temporal window. This structured unit captures both
user-level behavior and localized temporal dynamics, which are
essential for uncovering covert and coordinated risks.

However, this capsule-based MIL setting introduces unique mod-
eling requirements. Conventional MIL typically assumes indepen-
dent instances, aggregated through simple pooling [30, 32]. In con-
trast, fraudulent behaviors in live streaming often arise from coordi-
nated, temporally aligned interactions across users, which violates
the independence assumption. While some recent works [2, 7, 11]
have explored inter-instance relations or temporal dependencies
beyond this assumption, they primarily target uniformly struc-
tured, sequential data. By comparison, our setting features a two-
dimensional U X T capsule space, where each user is a discrete
entity and may engage in irregular, collusive behaviors over time.
These characteristics demand a new MIL architecture that can
jointly model temporal dynamics, cross-user dependencies, and the
irregularity inherent in live streaming interactions.

To this end, we propose an Action-Aware Capsule Multiple
Instance Learning (AC-MIL) framework for room-level risk detec-
tion in live streaming. AC-MIL adopts a hierarchical architecture
that combines serial and parallel modeling to progressively refine
room-level behavioral representations.

Specifically, AC-MIL first encodes raw user actions with a context-
aware encoder, then constructs localized user-timeslot capsules to
capture temporal-spatial interaction patterns. On top of these cap-
sules, a relational capsule reasoning mechanism first models latent
correlations among interaction patterns, followed by a dual-view
aggregation module that captures complementary user-centric and
time-centric perspectives. These modules yield four hierarchical
room-level representations fused for accurate risk assessment.

We evaluate AC-MIL on large-scale industrial datasets from
Douyin, a major live streaming platform in China, demonstrat-
ing state-of-the-art performance. Additionally, AC-MIL generates
capsule-level risk attributions that highlight suspicious user-time
patterns, providing interpretable evidence to support actionable
risk control.

Our main contributions are summarized as follows:

e We present, to the best of our knowledge, the first pioneering
study of risk assessment in live streaming rooms, and formulate
it as a Multiple Instance Learning (MIL) task where each instance
is defined as a user—timeslot capsule, i.e., a subsequence of user
actions within a specific time window.

e We propose the Action-Aware Capsule MIL (AC-MIL) method,
which captures room-level risk signals across multiple granulari-
ties and highlights suspicious user-time capsules for interpretable
risk tracing.

e Extensive experiments on large-scale industrial datasets from
Douyin demonstrate that AC-MIL achieves SOTA performance
in room-level risk assessment and provides actionable insights
for real-world moderation.

2 Related Work

Multiple Instance Learning. Multiple instance learning (MIL) is
a weakly supervised paradigm where only a single label is provided
for a group of instances, known as a bag, while the labels of indi-
vidual instances remain unknown [5]. Standard MIL methods rely
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on two assumptions: (i) instances within a bag are independent and
permutation-invariant, and (ii) a bag is labeled positive if at least one
of its instances is positive. Based on these assumptions, bag-level
predictions are typically derived by directly aggregating instance-
level predictions, such as through max or mean pooling [30, 32].

However, these assumptions neglect dependencies among in-
stances [2, 11] and limit the flexibility in modeling the relation-
ship between instance-level signals and bag-level outcomes [7].
To address these limitations, recent work has relaxed these two
assumptions by modeling inter-instance correlations [2] and in-
troducing soft aggregation mechanisms that allow all instances to
adaptively contribute to the bag-level prediction [7, 11, 13]. Such
approaches have proven effective for structured data such as time
series [2, 7, 12].

For example, MIL-LET [7] and TimeMIL [2] apply MIL to time
series by capturing temporal patterns and modeling dependen-
cies with order-preserving or time-aware pooling strategies. TAIL-
MIL [12] further extends this by supporting two-dimensional in-
stances encoding both temporal positions and variable-level signals
in multivariate time series.

Despite sharing the MIL perspective, our work differs substan-
tially from prior time-series-oriented MIL methods. Specifically, (i)
unlike regularly sampled time series, our user-timeslot patches are
highly uneven due to dynamic user participation; (ii) our minimal
units are semantically meaningful user actions rather than numeric
values; and (iii) the user dimension carries entity-level significance,
as users are potential risk actors, unlike variable channels in multi-
variate time series. These characteristics yield a two-dimensional
instance space (U X T) that requires MIL to capture interactions
across both time and user dimensions.

Risk Assessment in Online Platforms. Although risk assess-
ment at the level of live streaming rooms has not been explored,
other risk management tasks in online platforms have received
significant attention. In particular, we review two related areas: au-
tomated content moderation, which detects toxic user-generated
content, and online fraud detection, which focuses on identifying
malicious transactions or fraudulent users.

Automated content moderation focuses on automatively de-
tecting harmful user content [15, 23, 24, 34], with solutions such as
Google’s Perspective API for toxic comments [16] and Kuaishou’s
KuaiMod benchmark for policy-violating short videos [22]. Dif-
ferently, our work targets room-level risk assessment based on
behavioral patterns and user interactions beyond content alone.

Online fraud detection approaches mainly fall into two types:
graph-based methods [3, 6, 10, 17, 21, 28], which model relations
among users or transactions to detect fraud; and sequence-based
methods, which apply recurrent neural networks [1, 20] or attention
mechanisms [9, 19] to learn temporal dynamics in user activity.
Building on sequence models, hierarchical architectures [19, 25,
36], pre-training frameworks [18, 31], representation enrichment
techniques [26, 33] are adopted to extract user intentions.

Specifically, Taobao [17] detects fraudulent transactions in e-
commerce live streaming rooms, essentially following the transaction-
level fraud detection paradigm only using behavioral data from the
live scene. In contrast, we target comprehensive risk assessment
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at the live streaming room level, leveraging multimodal informa-
tion of user actions and capturing richer temporal and interaction
dynamics beyond single events.

3 Problem Formulation
3.1 Business Setting

Our goal is to enable early detection of risky live streaming rooms
that may violate platform policies or regulations, while providing
fine-grained, localized signals as evidence for enforcement. Un-
like pure content moderation, we focus on user behaviors and
interactions, which are key to uncovering coordinated or collusive
activities that content analysis may miss. We formulate this as a
binary classification task to identify risky rooms and safeguard the
platform ecosystem.

3.2 Live Streaming Room Definition

To model live streaming risk assessment as an MIL problem, we
first describe the structural composition of a live streaming room
at the finest granularity, namely, the action level.

Definition 3.1. (Role-Based Live Streaming Action) An action
occurring in a live streaming room r € R is defined as a 4-tuple
a = (u,t,a,x), where:

u € U is the user ID, where U denotes the user set.

t € T is the action timestamp.

a € Aisthe action ID, where A = AStreanery Aviewer represents
the action type set.

e x € R4 is the textual information associated with the action, e.g.,
the content of a comment; for actions without text, this is set to
none.

Definition 3.2. (Live Streaming Room) A live streaming room
r within time window [0, T] is defined as:

RO = (4, 51°T1), M

where U, = {u} } U U,V’[O’T

sisting of the unique streamer user u$ and the viewer users U,"
And sI°) = {a; | & = (uptiai,x:), ui € Uy, 0 < t; —ty < T}
is the sequence of all action events in room r during [0, T] after

1 denotes the user set in room r, con-
[0,T]

A

the room starts at t), where N} = |Sr[0’T] | denotes the total num-
ber of actions. For brevity, in the following sections, we omit the
room index r in symbols related to entities such as users and action
sequences, while keeping it in the overall room representation.

3.3 U x T Capsule-Level MIL

To facilitate the identification of risk-sensitive patterns localized
in specific users or timeslots, we partition the live streaming room
into user-timeslot capsules. Let the time window [0, T] be divided
into K consecutive timeslots {ﬁ}le. For each user u € U and

timeslot 7k, we define a capsule as:
Cuk = | @i | @i = (wti,a1,x:), t; € Ty (2
Each capsule C, . is defined as a time-ordered sub-sequence of

actions performed by user u within timeslot 7, which is an instance.
Thus, a live streaming room r is represented as a bag of capsules:

B, ={Cur|uel k=1...K}. 3)
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We formulate live streaming risk detection as an MIL problem,
where each bag B, is associated with a binary label y, € {0, 1}
indicating whether the room is risky (y, = 1).

4 Methodology

4.1 Overview of AC-MIL

As depicted in Figure 2, AC-MIL is built upon a hierarchical serial-
parallel architecture that progressively refines behavioral repre-
sentations from atomic user actions to room-level risk predictions,
while integrating multi-view contextual signals in parallel.

First, (a) Action Field Encoder transforms the raw multimodal
user behavior stream into globally contextualized representations.
These embeddings are then organized through (b) Capsule Con-
structor, which segments the action space into structured capsules,
i.e., localized behavioral units formed over user—time grids. These
capsules serve as interpretable intermediate representations that
capture rich local semantics.

Then, (c) Relational Capsule Reasoner employs a graph-
aware self-attention mechanism to discover latent structures in
user interactions and behavioral patterns, modeling intricate de-
pendencies and collaborative anomalies across capsules, and also
produces capsule-level risk attributions for localized interpretability.
Subsequently, (d) Dual-View Integrator encodes user-centric and
time-centric contextual views in parallel, capturing both structural
roles and temporal rhythms to provide complementary perspec-
tives that enhance expressiveness. Finally, (e) Cross-Level Risk
Decoder aggregates information from the action, capsule, user, and
timeslot levels, producing final room-level risk predictions. This
action-aware capsule MIL approach effectively integrates multi-
granular contextual signals with localized interpretability to enable
reliable risk assessment.

4.2 Capsule Structuring

We begin by introducing the initial stage of AC-MIL, namely the cap-
sule structuring process, which comprises the Action Field Encoder
and the Capsule Constructor. The Action Field Encoder transforms
raw user actions into globally contextualized representations. Sub-
sequently, the Capsule Constructor reorganizes the action embed-
dings into user-time grids to form capsules, laying the foundation
for subsequent capsule-based reasoning.

Action Field Encoder. Given the room-level action sequence
SIOTT = {a; = (u;, t;, a5, x1),i € [1,N?]}, we first transform each
action into a vector representation. Specifically, for each action
a;, we compute e; = [eai || Proj(x;) ] where e, is the learnable
embedding of the action ID a;, and Proj(-) is a learnable projection
layer that maps the action’s pre-encoded textual feature x; € R?
into a fixed-size vector with dimension d. To capture global action-
level dependencies, we flatten all action embeddings into a single
sequence, prepend a learnable [CLS] token, and feed it into a Trans-
former encoder [29]:

H? = TransformerEncoder([CLS], e,e ..., eNa). 4)

The output embedding of [CLS], denoted as h? = H?[0], serves
as the action-level room representation, capturing global contextual
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semantics across the entire stream. The remaining token embed-
dings (still denoted as {e;,i € [1, N*]} for brevity) preserve fine-
grained behavioral patterns and are reorganized into structured
capsules over user—time grids for higher-level reasoning.
Capsule Constructor. Risk in live streaming rooms is often lo-
calized to specific users and brief time intervals. Such fine-grained
user—timeslot patterns provide critical cues for detecting anoma-
lous or coordinated behaviors that global aggregation may ne-
glect. To capture these localized signals, we partition the room
into user—timeslot capsules.

Recall that each capsule C, ;. contains a short time-ordered se-
quence of a single user’s actions within a specific timeslot: C,, x =
[a,— | a; = (u, ti,a5,%;), & € ‘7;] We employ a Long Short-Term
Memory (LSTM) model [8] to learn this sequence and use the final
hidden state as the capsule embedding:

cuk =LST™ ([eilagec, ) [-11 )

where e; is the embedding of action «;, obtained from the Action
Field Encoder. By decomposing the room into user—timeslot capsules,
we form localized units for modeling cross-capsule interactions and
detecting collaborative anomalies.

4.3 Relational Capsule Reasoner

While user—timeslot capsules capture localized behavioral patterns,
many risk signals in live streaming rooms emerge from complex
interactions across users and timeslots. For example, coordinated
fraud often involves multiple users acting in different time windows
yet exhibiting correlated behaviors.

Adaptive Graph Construction. To uncover such collaborative
anomalies, we first build an adaptive global graph over all capsules.
Specifically, we unify all user—timeslot capsules into a global node
setV = {vi}g, where each node v; corresponds to the capsule
embedding c,, i, of user u; in timeslot 7k, with N¢ = |8B,| denoting
the total number of capsules within the room.

To quantify the semantic affinity between capsules, we compute
a similarity matrix as: SIM;; = GELU(ciTc j), where ¢; and c; are the
capsule embeddings corresponding to nodes v; and v, respectively.
This similarity matrix serves as a foundation for modeling pairwise
relations in the graph.

However, semantic similarity alone may fail to capture criti-
cal structural dependencies in live streaming, such as temporal
continuity in user behavior or streamer—audience interactions. To
encode such diverse relational semantics, we define a set of relation
types R = {t,u,r,a}, each represented by a binary mask matrix
M@ € {0, 1}N*N° ¢ € R. These masks capture distinct patterns
of interaction, which we detail as:

e Temporal relations (t) connect capsules from the same or neigh-
boring timeslots, modeling possible co-occurring or sequentially
related interactions within a short time window.

e User relations (u) connect all capsules that belong to the same
user across different timeslots, capturing user-specific behavioral
patterns or evolving tendencies.

e Role-guided relations (r) link the streamer’s capsules with
those of all viewers, modeling role-induced interaction patterns
that characterize anchor-audience dynamics.
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Figure 2: Overview of AC-MIL, a hierarchical serial-parallel framework that models raw user actions to produce room-level risk
predictions. Key components include: (a) Action Field Encoder for contextualizing raw behaviors; (b) Capsule Constructor that
structures actions into interpretable user—time capsules; (c) Relational Capsule Reasoner modeling dependencies via graph-
aware self-attention (also providing capsule-level interpretability); (d) Dual-View Integrator capturing user- and time-centric
views; and (e) Cross-Level Risk Decoder aggregating multi-granular contextual signals for final risk scoring.

e Auxiliary relations (a) connect capsule pairs not covered by
any of the above relations, serving as a residual channel to detect
potentially overlooked collaborative anomalies.

Formally, the relations are encoded by the following mask matrices,
where k; and k; denote the timeslots of capsules i and j, u; and u;
denote their corresponding users, and u® represents the streamer:

M =1|lki — k| < 1],
M;lj = l[ui =uj],
M} =1[(w =u® Auj #u°) (6)

V(wj=u Ay # us)],
. t
M?; =1 - min(1, M;; + M;‘]- + Mij).
We first compute the unnormalized adaptive relation-aware ad-

jacency matrix AC as a weighted sum over relation types, with y(¢)
as learnable parameters controlling the importance of each relation:

A¢)
ij= 27 ij ij> Aqj =

{e Y exp (AS,) )

where A° is the row-wise normalized adjacency matrix used for
downstream capsule relational reasoning.

Note that these relation masks are not mutually exclusive; an
edge can simultaneously belong to multiple relation types and
thus receive accumulated weights. For example, capsules involving

the streamer and a user in adjacent timeslots may be emphasized
through both the temporal and role-guided relations.
Cross-Capsule Relational Learning. With the normalized relation-
aware graph A® constructed, we next inject this structural prior
into capsule representation learning. To this end, inspired by Graph
Transformer works [27], we tailor a Transformer-based architec-
ture with a graph-aware self-attention mechanism, which integrates
both semantic similarities and topological priors.

We begin with the capsule embedding sequence, obtained by
flattening the user—timeslot grid first by user, then by timeslot: C =
[c1, €2 ..., cne | € RN%dk A learnable [CLS] token is prepended
to form the input sequence as C = [ [cLs], C].

Accordingly, the adjacency matrix AS is expanded to include
connections between [CLS] and all capsules, and we control the
connection strength by a hyperparameter y[51. Then, the standard
multi-head projections are computed as: Q = CW2,K = CWK,V =
cw'. Subsequently, the graph-aware self-attention integrates both
feature similarity and topological priors as:

®)

K™ + AC
Attention(Q, K, V, A®} = Softmax (Q—) V.

Vdi

This formulation enables capsules to interact based on both se-
mantic similarity and diverse topological priors, i.e., temporal, user,
role-guided, and residual relations, so that even capsules outside
predefined relations, yet with strong semantic affinity, can still be
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emphasized. Meanwhile, the [CLS] token aggregates global contex-
tual signals for room-level reasoning.

Consequently, we have H® = GraphAwareTransformer(e, AG),
with the tailored self-attention mechanism. H® contains refined
capsule embeddings, and h{ = H°[0] serves as a global capsule-level
room representation for downstream cross-level risk prediction.

4.4 Dual-View Integrator

Live streaming risks involve user-specific behavioral trajectories
and temporal accumulation of suspicious signals. We restructure
the refined capsule embeddings into user- and timeslot-aligned
views to enable complementary modeling of inter-user relations
and time-evolving risk patterns in parallel.
User-View Modeling. For intra-user modeling, we collect all cap-
sule embeddings of each user across timeslots and encode their se-
quential dynamics via a Gated Recurrent Unit (GRU) [4]. Formally,
for user u, the input sequence {c, }I]le is fed into a single-user
GRU:
hu,k = GRU(cu,ka hu,kfl): (9)

where h,, ;. denotes the hidden state at timeslot k. The last hidden
state h,, g, is taken as the user embedding h*.

For inter-user modeling, user embeddings within the room are
aggregated via attention pooling that assigns each user u a score:

ay = Softmax(wT [tanh(Wz, h¥) © o(W, h")] +1[u=u°] - bs),

U]

hY = > a,h",

u=1

(10)
where © denotes element-wise multiplication, o(-) is the sigmoid
activation, and w, W,, W, and b® are learnable parameters. The
bias b® is added exclusively to the streamer u°’s attention score,
emphasizing their central role in room interactions. This cross-user
aggregation highlights key participants with consistently abnormal
behaviors or coordinated patterns such as collusion, thus enriching
the user-level room representation h}.
Timeslot-View Modeling. For intra-timeslot modeling, let {c; }ic7;
denote the set of capsule embeddings within timeslot 7. We apply
an attention pooling mechanism analogous to Eq. (10), but without
the streamer bias term, to compute the timeslot embedding:

a; = Softmax(w'T [tanh(W’V ¢)@c(Wy c,-)]), t = Z aj ¢,
€Tk
(11)
where w’, Wy, W’y are learnable parameters, and t is the result-
ing timeslot embedding summarizing key user interactions in that
interval.

For inter-timeslot modeling, the sequence of timeslot embeddings
{tk}lzz1 is fed into a GRU to capture the temporal progression of
risk signals across the live streaming session. The final hidden state
of the GRU is taken as the global timeslot-level room representation
ht, encoding cumulative dynamics and enabling the detection of
sequential or bursty anomalies spanning multiple timeslots.

4.5 Cross-Level Risk Decoder

Representation Fusion and Classification. After obtaining room-
level representations from multiple semantic levels, we fuse these
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complementary signals via a gating mechanism to produce the final
room embedding for classification. Specifically, we apply separate
gates to each level’s representation:

9" =o(MLPy(h})), ¢ = o(MLP.(h7)),

9" =o(MLPy(h})), g¢'=o(MLPi(h;)), (12

where each g denotes a scalar weight learned for its corresponding
representation, and each 2-layer MLP(-) is independently parame-
terized to allow flexible balancing of multi-level signals. The final
room-level representation h, is computed as a weighted sum:

h,=¢*-h® + ¢°-h¢ + g"-h" + ¢g'-hl. (13)

Finally, h, is fed into a classifier (implemented as a 2-layer MLP)
for room-level risk classification: y, = Classifier(h,). This cross-
level decoding enables the model to adaptively integrate signals
across multiple granularities, capturing both fine-grained action
dynamics and high-level collaborative or temporal risk patterns for
comprehensive room-level risk assessment.

Optimization Objective. We train the AC-MIL model using the
binary cross-entropy (BCE) loss summed over all training samples:
L = —Zﬁil [yr log(g,) + (1 — y,) log(1 — Q,)], where N is the
number of training rooms, y, € {0, 1} is the ground-truth label, and
7y € (0,1) is the predicted risk score.

Localized Interpretability. With reference to Eq. 8, we treat the
[CLS] token as the query and examine its attention weights over all
capsules. Specifically, we extract the attention distribution ar!®-! €

RN from AS

[eLST: which denotes the first row of the attention

matrix: o
Qrcis: KT + A[CLS],:

Vi

quantifies the contribution of capsule j to

a1 = Softmax ( , (14)

where each entry (ZE.CLS]

the aggregated room-level representation, providing capsule-level
interpretability for actionable suspension decisions.

5 Experiments

In this section, we validate the effectiveness of AC-MIL on large-
scale real-world datasets from a major live streaming platform, with
the aim of addressing the following research questions:

e RQ1: How does AC-MIL perform in live streaming risk assess-
ment compared to existing methods?

e RQ2: How do the different components of AC-MIL contribute to
its overall effectiveness?

e RQ3: Can AC-MIL effectively detect typical scripted suspicious
behaviors in live streaming scenarios?

e RQ4: Does AC-MIL learn meaningful room representations that
separate risky and normal patterns?

e RQ5: Can AC-MIL outperform deployed online models in real-
world live streaming environments?

e RQ6: How sensitive is AC-MIL to key hyperparameters used in
capsule construction?

5.1 Experimental Setup

Datasets. We conducted experiments on two large-scale industrial
datasets from Douyin, a major live streaming platform in China!,

1All data collection adhered to the platform’s security and privacy regulations.
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Table 1: Performance comparison between AC-MIL and baselines. The best and second-best results of the baselines are bold

%)

and underlined, respectively. The
significant (p-value < 0.05).

indicates that all the performance improvements over the best baselines are statistically

‘ May Dataset ‘ June Dataset
Methods | PRAUCT Fl-score] R@O.IFPRT FPR@OSR | | PR-AUCT Fl-score] R@0.IFPR] FPR@O.9R |

Sequence | Transformer | 07189 0.6668 0.8394 0.1580 0.6801 0.6341 0.8225 0.1565
L. | Reformer | 07203 06752 0.8575 0.1436 0.6911 0.6395 0.8104 0.1760
Informer | 07246  0.6708 0.8438 0.1555 06879 0.6391 0.8375 0.1601

mi-NET 07276 0.6769 0.8560 0.1320 0.6911 0.6406 0.8225 0.1673

AtMIL 07252 0.6763 0.8550 0.1441 06952 0.6519 0.8415 0.1479

MIL AdMIL 0719  0.6781 0.8389 0.1568 06837  0.6491 0.8225 0.1565
Methods | MIL-LET | 0.7241 0.6749 0.8546 0.1418 06942  0.6528 0.8455 0.1499
TimeMIL | 07353  0.6790 0.8599 0.1436 06963 0.6471 0.8495 0.1367

TAIL-MIL | 07316  0.6785 0.8570 0.1341 07029 0.6509 0.8205 0.1555
AC-MIL(ours) 0.7676"  0.7002*  0.8722" 0.1260° | 0.7311°  0.6777°  0.8546" 0.1345"

Best Improv. +4.4% +3.1% +1.4% -4.8% +4.0% +3.8% +1.0% -1.6%

denoted as May and June. Each sample is a raw action sequence
from a live streaming room (cf. Definition 3.2), truncated to the first
30 minutes to support early-stage risk detection, with each timeslot
set to 100 seconds. We further filter out inactive users who only
entered the room without performing any other actions. Besides,
we retain all positive instances and sample negatives at a 1:10 ratio,
resulting in a positive class proportion of approximately 9.09%. For
each room, we select the top 50 most active viewers based on total
action count to construct the action sequence.

Regarding the time spans, the May dataset contains training
data from 05/20/2025 to 06/03/2025, validation data from 06/11/2025
to 06/12/2025, and test data from 06/13/2025 to 06/14/2025. The
June dataset includes training data from 06/04/2025 to 06/10/2025,
validation data on 06/15/2025, and test data on 06/16/2025. The
basic statistics are displayed in Table 2. More details are provided
in Appendix A.1.

Baselines. As there is no existing method tailored for room-level
risk assessment in live streaming, we adopt strong baselines from
two relevant directions. Given the sequential nature of the data and
our use of an MIL framework, we consider (i) Sequence Models to
directly model the action sequences of rooms: Transformer [29],
Reformer [14], and Informer [35]. (ii) MIL methods to make room-
level predictions via instance aggregation: mi-NET [30], Attention

Table 2: The basic statistics of the May and June
datasets (Avg.time in minutes).

‘ ‘ #Rooms #Avg.actions #Avg.users Avg.time
train | 176,347 709 35 30.0
May | val | 23,562 704 36 29.6
test | 22,462 740 37 29.7
train | 79552 700 36 30.0
June | val 10,934 767 40 29.1
test 10967 725 37 29.1

MIL (AtMIL) [11], Additive MIL (AdMIL) [13], MIL-LET [7],
TimeMIL (2], and TAIL-MIL [12]. More details are introduced in
Appendix A.2.

Implementation Details. Our implementation is based on Python
3.11.2 and PyTorch 2.6.0. The hyperparameter y[-! is tuned from
{1.0,1.5,2.0}. To mitigate overfitting, we adopt early stopping with
a patience of 20 epochs, and the maximum number of training
epochs is set to 100. Except for the Graph-Aware Transformer,
which uses a single layer, all other sequence models, including
LSTM, GRU, and the Transformer components in both AC-MIL and
baseline methods, use two layers. The number of attention heads
is set to 8 for all Transformer-based models. The dropout rate is
set to 0.1, and all embedding dimensions are fixed at 128. We use
a batch size of 128 and train with the AdamW optimizer, using a
learning rate of 0.0001 and a weight decay of 0.0001.

Evaluation Metrics. We adopt PR-AUC, F1-score, R@0.1FPR,
and FPR@0.9R as evaluation metrics. PR-AUC and F1-score reflect
the balance between precision and recall, which is crucial for risk
detection under severe class imbalance. While ROC-AUC is widely
used, it can be overly optimistic in this setting due to the dominance
of true negatives; PR-AUC provides a more informative view by
focusing on the rare but critical positive class. R@0.1FPR measures
the recall achievable under a 10% false positive rate, and FPR@0.9R
captures the false alarm rate when 90% of risky cases are recalled.

5.2 Overall Performance (RQ1)

To address RQ1, we evaluate our proposed method AC-MIL against
various baselines on the May and June datasets. The results are pre-
sented in Table 1, from which we draw the following observations.

AC-MIL achieves new state-of-the-art performance. AC-
MIL consistently outperforms all baselines across both datasets
and all metrics, establishing a new performance benchmark for
live streaming risk assessment. Specifically, it improves PR-AUC
by up to +4.4% on the May dataset and +4.0% on the June dataset
compared to the strongest baseline. This substantial gain demon-
strates the effectiveness of our model in distinguishing risky rooms.
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Importantly, AC-MIL also achieves significantly lower FPR@0.9R,
especially on the May dataset, indicating a stronger ability to reduce
false positives while maintaining high recall.

MIL-based methods outperform traditional sequence mod-
els. Among all baselines, we observe that MIL-based methods gener-
ally outperform sequence models. This confirms that modeling live
streaming rooms as bags of interactions with room-level supervi-
sion is more appropriate for risk assessment than simply processing
them as flat sequences. Sequence models tend to blur localized high-
risk signals when faced with long or noisy interaction histories,
leading to degraded performance. Despite their limitations, the
decent performance of sequence models highlights the value of
flattened action representations, which motivates our design of a
full-sequence Action Field Encoder as the initial step in AC-MIL.

AC-MIL further advances MIL approach with structured
capsule modeling. While the best-performing baseline (TimeMIL)
leverages temporal grouping, it overlooks the underlying spatio-
temporal dependencies among participants. AC-MIL addresses this
limitation by constructing user—timeslot capsules, which aggregate
interactions within localized spatio-temporal contexts. This struc-
tured abstraction helps preserve fine-grained risk signals that may
be subtle or coordinated. Furthermore, the cross-granular fusion
module enables the model to capture collaborative or anomalous be-
havior patterns across different semantic levels, thereby enhancing
its detection capability.

5.3 Ablation Study (RQ2)

To address RQ2, we design four ablated variants of AC-MIL to assess
the contribution of individual design branches and the effectiveness
of the overall architecture:

e AC-MIL w/o a removes the Action Field Encoder and directly
constructs capsules from raw action embeddings. It also omits
the action-level representation in the final fusion.

e AC-MIL w/o c replaces the graph-aware self-attention with
standard self-attention and excludes the capsule-level room rep-
resentation during gating.

e AC-MIL w/o u removes the user-level modeling branch along
with the user-level room representation.

e AC-MIL w/o t removes the timeslot-level modeling branch along
with the timeslot-level room representation.

As shown in Table 3, removing any core component consistently
degrades performance. Specifically, excluding the Action Field En-
coder (AC-MIL w/o a) reduces PR-AUC by 2.3%, underscoring the
importance of global action context. Removing relational capsule
learning (AC-MIL w/o c) results in a 1.7% PR-AUC drop, high-
lighting the effectiveness of our dynamic relation-aware graph in

Table 3: Ablation study of AC-MIL on June dataset.

| PR-AUCT Fl-score] R@O0.1FPRT FPR@O.9R |

AC-MIL ‘ 0.7311 0.6777 0.8546 0.1345
AC-MIL w/o a 0.7146 0.6569 0.8445 0.1548
AC-MIL w/o ¢ 0.7188 0.6617 0.8455 0.1459
AC-MIL w/o u 0.7267 0.6559 0.8486 0.1446
AC-MIL w/o t 0.7163 0.6733 0.8506 0.1449
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Figure 3: An illustrative case of collusive fraud detected by
AC-MIL. Left: Attention heatmap over the User-Timeslot
capsule space. Right: The streamer promotes a fake part-time
job, followed by planted viewers. Victims are later charged
for training and materials before the scammers vanish.

capturing meaningful correlations. Omitting user- or timeslot-level
modeling (AC-MIL w/o u and AC-MIL w/o t) also harms perfor-
mance across all metrics, confirming the complementary nature of
the two views. These results validate that AC-MIL’s hierarchical
serial-parallel design and multi-view fusion are essential for risk
assessment at the live streaming room level.

5.4 Case Study (RQ3)

To address RQ3, we present a case study demonstrating how AC-
MIL uncovers collusive fraud schemes in live streaming. With at-
tention scores computed as in Eq. 14, as shown in Figure 3, AC-MIL
assigns high attention to viewer clusters whose activity is tem-
porally synchronized with the streamer’s suspicious promotional
behavior, suggesting potential collusion. More case analyses are in
Appendix B.

In this example, the streamer actively promotes online handicraft
jobs and instructs viewers to consult a shopping assistant for fur-
ther guidance. Soon after, several planted viewers emerge, sending
virtual gifts to attract attention and posting persuasive comments
such as “Got it from your assistant!” or “I'm a stay-at-home mom
and really made money from this!”, simulating authentic user expe-
riences. These messages are strategically timed to build trust and
trigger engagement from real viewers.

By highlighting such coordinated viewer—timeslot patterns, AC-
MIL provides actionable cues for detecting suspicious segments
and enables timely, evidence-based risk intervention.

(a) AC-MIL (ours) (b) TimeMIL

Figure 4: Visualization of room representations learned by
AC-MIL and TimeMIL, where salmon nodes represent risky
rooms and turquoise nodes represent benign ones.
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Table 4: Online test between AC-MIL and deployed mod-
els (XGBoost-based and Transformer-based) on real-world
data spanning from 07/13/25 to 07/14/25. A 1:10 positive-to-
negative sampling ratio is applied.
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Table 5: Sensitivity analysis of AC-MIL to hyperparameters
(timeslot length and number of selected top viewers) on the

June dataset. The (100s, 50 viewers) setting is the default

configuration used in all main experiments.

| PR-AUCT Fl-scoreT R@0.1IFPRT FPR@O.9R | Timeslot (s) 100 100 100 50 150

AC-MIL | 0.7355 0.6574 0.8390 0.1655 #Top Viewers 50 30 70 50 30
XGBoost 0.4512 0.4479 0.5808 0.5514 PR-AUCT | 07311 0.7157 0.7279 0.7308 0.7312
Transformer | 0.6381 0.6097 0.7864 0.1909 F1-score | 0.6777 0.6784 0.6657 0.6739 0.6781
R@O0.1IFPR T | 0.8546 0.8646 0.8596 0.8636 0.8497
FPR@O9R | | 0.1345 0.1270 0.1250 0.1357 0.1375

5.5 Visualization (RQ4)

To address RQ4, we visualize the learned room representations
to illustrate how AC-MIL captures discriminative patterns for risk
identification. We apply t-SNE to reduce the dimensionality of room
representations learned by AC-MIL and TimeMIL (the strongest
baseline) into two dimensions for visualization.

As depicted in Figure 4, the representations learned by AC-MIL
exhibit a clear clustering structure, where risky and non-risky
rooms are well separated. In contrast, the representations produced
by TimeMIL show more overlap between the two classes, indicating
less discriminative power. This clearer separation also aligns with
AC-MIL’s higher recall and lower false alarm rate, indicating that it
effectively distinguishes between risky and benign room patterns.

5.6 Online Test (RQ5)

To address RQ5, we evaluate the performance of AC-MIL against
two deployed online models on more up-to-date data. The XGBoost-
based model relies on hand-crafted features derived from statistics
of streamers’ historical activities and real-time room indicators to
make a preliminary judgment. And the Transformer-based model
flattens the entire room-level action sequence as input, but does
not explicitly model user—timeslot granularity. Table 4 shows that
AC-MIL consistently outperforms both online models across all
metrics, demonstrating superior performance.

In particular, besides significant increases in PR-AUC, AC-MIL
also achieves higher constrained recall (R@0.1FPR), outperforming
XGBoost by +44.46% and Transformer by +6.7%. Moreover, AC-MIL
reduces FPR@0.9R to 0.1655, significantly lower than XGBoost and
Transformer, which is crucial for minimizing false alarms in online
settings for preserving normal users’ experience.

5.7 Hyperparameter Sensitivity Test (RQ6)

To address RQ6, we conduct a sensitivity analysis on the June
dataset to examine how AC-MIL responds to key hyperparameters
used in capsule construction, including the timeslot length and the
number of selected top viewers.

As shown in Table 5, AC-MIL demonstrates stable performance
across a range of hyperparameter settings. Varying the timeslot
length from 50s to 150s leads to only marginal changes in evalu-
ation metrics, indicating that the model is not overly sensitive to
temporal granularity. Similarly, adjusting the number of top view-
ers from 30 to 70 results in minor performance fluctuations, with
no configuration causing substantial performance degradation.

Overall, these results suggest that AC-MIL is robust to reasonable
variations in capsule construction hyperparameters.

6 Conclusion

In this work, we presented a pioneering study on risk assessment
in live streaming rooms under weak supervision, where only room-
level labels were available. We formulated the problem as an MIL
task by defining user—timeslot capsules that capture localized user be-
haviors within temporal windows. To effectively model the complex
temporal and cross-user dependencies inherent in live streaming
risks, we proposed AC-MIL, an Action-Aware Capsule MIL frame-
work. It encodes user actions into semantic capsules, then models
their relational dependencies through adaptive reasoning, and ag-
gregates multi-granular contextual information to deliver accurate
and interpretable risk predictions.

Extensive experiments on large-scale industrial datasets from
Douyin demonstrated that AC-MIL set new SOTA performance
by a large margin, significantly outperforming existing MIL and
sequential baselines with notably high recall and low false alarm
rates for early-stage risk detection. Notably, our method provides
localized capsule-level interpretability, enabling the identification
of problematic segments as actionable evidence to support targeted
risk interventions.
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A Experimental Setup Details

A.1 Data Collection and Preprocessing

We collect various actions from viewers and streamers. The viewer
action space encompasses various types of interactions, including
room entry, comments, chat highlights, leaderboard appearances,
danmaku messages, gifting, likes, shares, co-stream requests, and
group joins. For streamer-side activities, we consider the start of
the stream, voice-to-text transcribed speech, and OCR-based visual
content monitoring. The latter two are obtained through scheduled
platform inspections, where the raw data is discretized at collec-
tion time as part of the risk control sampling process. The action
sequences are capped at 2,096 tokens in length.

Textual fields within actions (e.g., comment content or spoken
scripts) are pre-encoded using a Chinese-BERT? encoder. All inter-
action data mentioned above is collected from publicly available
content and processed in compliance with platform privacy and
security policies.

A.2 Baselines

Our baseline methods fall into two categories: (i) Sequence Models
to directly model the action sequences of rooms:

e Transformer [29] is a widely used sequence model with a self-
attention mechanism.

o Reformer [14] is a Transformer variant with efficient locality-
sensitive hashing.

o Informer [35] is another efficient Transformer variant employ-
ing sparse attention and distillation for scalable long-sequence
modeling.

(if) MIL methods to learn room-level predictions via instance aggre-
gation:

Zhttps://huggingface.co/google-bert/bert-base-chinese
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* Suggesting ‘the odds’ are changing as the game progresses
* Asking viewers to watch the streamer’s gestures, pointing
to ambiguous screen areas, implying where to gamble
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Figure 5: An illustrative case of covert gambling promotion detected by AC-MIL. Left: Attention heatmap over the User-Timeslot
capsule space. Right: High-attention regions reveal a set of risky capsules: The streamer leverages ambiguous gestures and
subtle hints to attract potential gamblers, who begin to inquire about betting. Later, collusive viewers indirectly suggest where
to find the gambling link (also acknowledged by the streamer), forming a case of off-platform gambling redirection.

e mi-NET [30] directly aggregates instance scores into the final
bag prediction.

e Attention MIL (AtMIL) [11] learns soft attention weights to
highlight informative instances.

o Additive MIL (AdMIL) [13] proposes additive pooling, which
combines attention and instance pooling in an additive manner
to capture both importance and presence of instances.

e MIL-LET [7] decouples attention and classification by computing
them independently and combining them via attention-weighted
prediction scores.

e TimeMIL [2] is a time-aware MIL pooling method with learnable

wavelet positional tokens.

TAIL-MIL [12] applies 2D-MIL to multivariate time series.

B Further Case Studies

In the following appendix, we provide more case studies that fur-
ther demonstrate the value of capsule-level interpretability. Our
model not only distinguishes important capsules across users and
time but also captures meaningful sequences of actions within each
capsule. This two-level insight helps reveal coordinated and evolv-
ing fraudulent behaviors more clearly, which is useful for practical
risk detection and intervention.

Illegal gambling promotion. Here, we present a case of illegal
gambling promotion in live streaming. As illustrated in Figure 5,
AC-MIL highlights some suspicious promotional segments in a
risky streaming room centered around gambling-related activities.
In this session, the streamer continuously displayed live scores from
multiple soccer matches, rapidly switching between games without
offering any commentary, thereby cultivating an atmosphere of
intense betting interest.

Although the streamer never explicitly mentioned gambling,
subtle cues were embedded in the stream, such as saying “odds are
changing fast” and repeated gestures pointing toward ambiguous
screen areas. These vague prompts appeared sufficient to trigger
some viewers to ask questions such as “Where to bet?” and “Which

platform are you using?”, and a user even forwarded this live room
and specified the exact betting odds like “All in on 3:2”.

After these viewer inquiries, several accounts responded with
suggestive and directional messages such as “Check the top-left
corner,” “Look at the host’s profile,” or “The pinned message has the
link” The speed and consistency of these replies strongly suggest
that these accounts were pre-arranged, deliberately planted to steer
genuine users toward off-platform gambling.

In contrast to the prior case involving bot-like coordinated fraud,
most suspicious participants here appeared to be real users who
were gradually lured into risky behavior. Their progression was
facilitated by a small group of strategically placed collusive audience
members. This case illustrates how risk can emerge organically from
subtle yet persistent cues, then escalate rapidly through collusive
interactions, making it particularly challenging to detect under
weak supervision.

AC-MIL effectively captures this evolving interaction pattern,

assigning high attention to both the streamer’s ambiguous prompts
and the subsequent user responses. It surfaces interpretable signals
of escalating intent and coordination, providing actionable evidence
to support timely intervention.
Fraudulent phone sales. Then, we present a case of fraudulent
phone sales in live streaming. As shown in Figure 6, AC-MIL flags
a suspicious room where the screen prominently displays slogans
like “Brand-new folding-screen smartphone, only 358 RMB,” while
the streamer aggressively markets it as a “flagship configuration”
and claims “factory clearance—only a few left” The broadcast is
accompanied by countdown timers and constant verbal cues urging
immediate purchase.

The streamer’s on-screen promotions and verbal cues are clearly
malicious, and coordinated actions by some viewers make the case
even more suspicious. For example, one viewer often posts buyer-
like comments such as “Just placed my order, really a great deal” and

“Already paid, don’t miss out,” while frequently liking the stream

and tagging friends. Another viewer repeatedly likes the stream
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« displaying slogans about an unusually cheap new phone
* aggressively marketing the phone
* urging viewers to buy immediately through countdowns
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Figure 6: An illustrative case of fraudulent cheap phone sales detected by AC-MIL. Left: Attention heatmap over the
User-Timeslot capsule space. Right: Risky capsules reveal a coordinated scheme centered on an unrealistically low-priced
phone scam. The streamer aggressively promotes the phone with urgency tactics, while fake “buyers” generate bursts of likes
and positive comments within short time frames, creating false trust and pushing real users toward payment fraud.

over 20 times in a short period and posts simple praise like “host is
amazing,” which is unusual and clearly meant to boost popularity.

These actions form clear patterns that our capsule-based method
captures. One capsule may include more than 20 likes from the
same user within a short time, which signals suspicious activity.
By grouping related actions into capsules, the model detects co-
ordinated or unnatural behavior. Unlike traditional methods that
analyze actions separately or rely on static user data, AC-MIL uses

capsules as the basic units for detection, allowing it to catch subtle
and timely coordination.

In this case, AC-MIL assigns high attention to the streamer’s
capsule and two viewer capsules, highlighting their coordinated
role in the scam. This shows how capsule-level modeling uncovers
meaningful behavior patterns behind unusually low-priced promo-
tions.
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